(2)

Code: ESC-202 (100309)

B.Tech 3rd Semester Special Exam., 2020

(New Course)

ENGINEERING MECHANICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer (any seven):

 $2 \times 7 = 14$

 (a) The resultant of two forces P and Q acting at an angle θ is equal to

(i)
$$\sqrt{(P^2+Q^2+2PQ\sin\theta)}$$

$$(ii) \sqrt{(P^2 + Q^2 + 2PQ\cos\theta)}$$

(iii)
$$\sqrt{(P^2+Q^2-2PQ\sin\theta)}$$

(iv)
$$\sqrt{(P^2+Q^2-2PQ\cos\theta)}$$

(Turn Over)

20AK/1296

- (b) The moment of a force about any point is geometrically equal to ____ area of the triangle whose base is the line representing the force and vertex is the point about which the moment is taken.
 - (i) half
 - (ii) same
 - (iii) twice
 - (iv) None of the above
- (c) A circular hole of radius (r) is cut out from a circular disc of radius (2r) in such a way that the diagonal of the hole is the radius of the disc. The centre of gravity of the section lies at
 - (i) the centre of a disc
 - (ii) the centre of the hole
 - (iii) somewhere in the disc
 - (iv) somewhere in the hole
- (d) The moment of inertia of a triangular section of base (b) and height (h) about an axis passing through its vertex and parallel to the base is ____ as that passing through its CG and parallel to the base.
 - (i) twelve times
 - (iii) nine times
 - (iii) six times
 - (iv) four times

- (c) Which of the following statements is correct?
 - (i) The force of friction does not depend upon the area of contact.
 - (ii) The magnitude of limiting friction bears a constant ratio to the normal reaction between the two surfaces.
 - (iii) The static friction is slightly less than the limiting friction.
 - -(iv) All of the above
 - (f) The efficiency of a screw jack is maximum when the helix angle is equal to

(i)
$$45^{\circ} + \frac{\phi}{2}$$

(ii) 45° -
$$\frac{\phi}{2}$$

(iii)
$$\frac{\phi}{2} + 30^{\circ}$$

(iv)
$$\frac{\phi}{2}$$
 - 30°

- (g) The time of flight of a projectile on an upward inclined plane depends upon
 - # angle of projection
 - (ii) angle of inclination of the plane
 - (iii) Both (i) and (ii)
 - (iv) None of the above

- (h) The relationship between linear velocity and angular velocity of a cycle
 - (i) exists under all conditions
 - (ii) does not exist under all conditions
 - (iii) exists only when it does not slip
 - (iv) exists only when it moves on horizontal plane
- (i) The loss of kinetic energy due to direct impact of two bodies depends on
 - (i) the mass of two bodies
 - (ii) the initial velocities of two bodies
 - (iii) the final velocities of two bodies
 - (iv) Both (i) and (ii)
- (j) In order to increase the acceleration of a mass rolling down on a rough inclined plane (without slipping), we have to
 - (i) increase the mass of the rolling
 - (ii) increase the inclination of the plane
 - (iii) Both (i) and (ii)
 - (iv) None of the above

- 2. (a) What is meant by moment of a force?
 How will you explain it mathematically?
 - (b) State the Varignon's principle of moments.
 - (c) A force F of magnitude 50 N is exerted on the automobile parking-brake lever at the position x = 250 mm (Fig. 1). Replace the force by an equivalent force-couple system at the pivot point O.

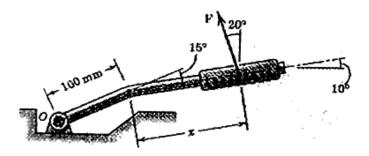


Fig. 1

3. (a) It is known that a force with a moment of 950 N-m about D is required to straighten the fence post CD (Fig. 2). If d = 2.70 m, determine the tension that must be developed in the cable of winch

puller AB to create the required moment about point D.

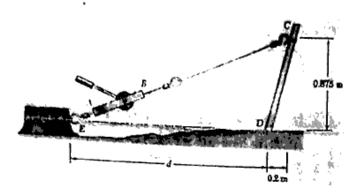


Fig. 2

- Describe the method of finding the line of action of the resultant of a system of parallel forces.
- 4. (a) Two cylinders P and Q rest in a channel as shown in Fig. 3. The cylinder P has diameter of 100 mm and weighs 200 N, whereas the cylinder Q has diameter of 180 mm and weighs 500 N. If the bottom width of the box is 180 mm, with one side vertical and the other inclined

8

3

3

8

at 60°, determine the pressures at all the four points of contact.

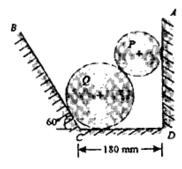


Fig. 3

- (b) Show that if three coplanar forces, acting at a point be in equilibrium, then each force is proportional to the sine of the angle between the other two.
- 5. (a) A truss of 9 m span is loaded as shown in Fig. 4. Find the reactions at the two supports.

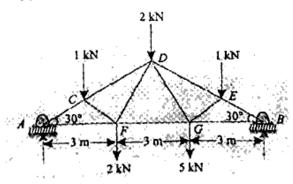


Fig. 4

(Turn Over)

9

5

8

- (b) State the laws of friction and explain the term angle of friction.
- 6. (a) A rectangular hole is made in a triangular section as shown in Fig. 5. Determine the moment of inertia of the section about X-X axis passing through its centre of gravity and the base BC.

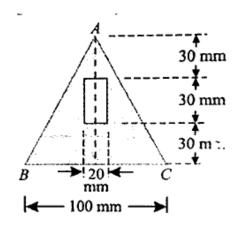


Fig. 5

- (b) Prove the parallel axis theorem in the determination of moment of inertia of areas with the help of a neat sketch.
- 7. (a) A body of weight 50 N is hauled along a rough horizontal plane by a pull of 18 N acting at an angle of 14° with the horizontal. Find the coefficient of friction.

6

9

5

(ь)	Explain th	he appli	application of the principle				
	of virtua	l work	in	case	of	lifting	
	machines						

7

8. (a) The equation of motion of an engine is given by $s = 2t^3 - 6t^2 - 5$, where s is in metres and t in seconds. Calculate (i) displacement and acceleration when velocity is zero and (ii) displacement and velocity when acceleration is zero.

8

(b) Obtain an equation for the trajectory of a projectile and show that it is a parabola.

6

9. (a) A ball of mass 1 kg moving with a velocity of 2 m/s impinges directly on a ball of mass 2 kg at rest. The first ball, after impinging, comes to rest. Find the velocity of the second ball after the impact and the coefficient of restitution.

0

(b) A bullet of mass 30 g is fired into a body of mass 10 kg, which is suspended by a string 0.8 m long. Due to this impact, the body swings through an angle 30°. Find the velocity of the bullet.

6

* * *

Code: ESC-202 (100309)

0