Code: 105503

B.Tech 5th Semester Exam., 2021

(New Course)

FORMAL LANGUAGES AND AUTOMATA THEORY

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following (any seven): $2 \times 7 = 14$
 - (a) Which of the following statements is/are False?
 - A. For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine.
 - B. Turing recognizable languages are closed under union and complementation.
 - C. Turing decidable languages are closed under intersection and complementation.
 - D. Turing recognizable languages are closed under union and intersection.
 - (i) A and D only
 - (ii) A and C only
 - (iii) B only
 - (iv) C only

- (b) Enumerator is a Turing machine with
 - (i) an output printer
 - (ii) 5 input tapes
 - (iii) a stack
 - (iv) None of the above
- (c) The language $\{a^mb^nc^{m+n} \mid m, n \ge 1\}$ is
 - (i) regular
 - (ii) context-free but not regular
 - (iii) context-sensitive but not context-
 - (iv) type-0 but not context-sensitive
- (d) The maximum number of states of a DFA converted from an NFA with n states is
 - (i) n
 - (ii) n^2
 - (iii) 2ⁿ

22AK/356

(iv) None of the above

(Turn Over)

(Continued)

(e) If L1 and L2 are context-free languages, L1-L2 is ____ context-free.

- (i) always
- (ii) sometimes
- (iii) never
- (iv) None of the above

(f) Which of the following does not have left recursions?

- (i) Chomsky normal form
- (ii) Greibach normal form
- (iii) Backus-Naur form
- (iv) All of the above

(g) Let N be an NFA with n states and let M be the minimized DFA with m states recognizing the same language. Which of the following is necessarily true?

- (i) $m \leq 2^n$
- (ii) $n \leq m$
- (iii) M has one accept state
- (iv) $m=2^n$

- (h) ____ is the acyclic graphical representation of a grammar.
 - (i) Binary tree
 - (ii) Octtree
 - (iii) Parse tree
 - (iv) None of the above
- (i) A minimum state deterministic FA accepting the language

$$L = \{w \mid w \in \{0, 1\} *\}$$

where number of 0's and 1's in w are divisible by 3 and 5 respectively, has

- (i) 15 states
- (ii) 11 states
- (iii) 10 states
- (iv) 9 states

(j) The construction time for DFA from an equivalent NFA (m number of node) is

- (i) $O(m^2)$
- (ii) $O(2^m)$
- (iii) O(m)
- (iv) $O(\log m)$

- 2. (a) Tabulate Chomsky hierarchy of grammar with an example for each.
 - (b) Design a finite state machine or abstract model for Parity checker. 7+7=14
- 3. (a) Construct an NFA that will accept string of 0's, 1's and 2's beginning with a 0's followed by odd number of 1's and ending with any number of 2's.
 - (b) Construct a push-down automata that accepts the following language:

 $L = \{uawb : u \text{ and } w \in (a, b) * \text{ and } |u| = |w|\}$ 7+7=14

- **4.** (a) Design a Turing machine (TM) to compute n mod2.
 - (b) Design a DFA corresponding to regular expression 1*(10)*. 7+7=14
- 5. (a) Consider the grammar:

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

Use the CYK algorithm to determine whether the given string "baaba" is in L(G) or not.

- (b) Suppose L is context free and R is regular, justify your answer with the help of example:
 - (i) Is L-R necessarily context free?
 - (ii) Is R-L necessarily context free? 7+7=14
- 6. (a) Show that the language $L = \{a^{n!} : n \ge 0\}$ is not regular or not context-free language.
 - (b) Let G be a context-free grammar in Chomsky normal form that contains b variable. Show that if G generates some string using a derivation with at least 2^b steps, then L(G) is infinite. 7+7=14
- 7/ (a) State and prove pumping lemma for regular sets.
 - (b) Show given grammar over alphabet {a, b}, verify whether it is ambiguous or unambiguous:

 $S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$ 7+7=14

8. (a) Show that the sum function

$$f(x, y) = x + y$$

is primitive recursive.

K/356

(b) Construct a PDA that accepts the language $L = \{a^{2n}bc \mid n \ge 0\}$ by final state and empty stack. 7+7=14

- 9. Write short notes on the following: $3\frac{1}{2} \times 4 = 14$
 - (a) Post-correspondence problem
 - (b) Chomsky normal form
 - (c) Multistack Turing machine
 - (d) Pumping lemma for CFL

* * *

Code: 105503