(2)

B.Tech 4th Semester Exam., 2018

DATA STRUCTURES

Time: 3 hours

Full Marks: 70

Instructions:

- (i) All questions carry equal marks.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer any seven questions of the following:
 - (a) Define data structure.
 - (b) What are average, best and worst case complexities?
 - (c) Write formula to calculate address of elements in two-dimensional array.
 - (d) What is deque? Explain with example.
 - (e) Define tail recursion.
 - What is the need for linked representation of lists?
 - (Turn Over)

- (g) Give node structure for the term of polynomial having single variable.
- (h) What is the maximum number of nodes in a binary tree of depth k?
- (i) What is threaded binary tree?
- (j) What is worst case time complexity of quick sort?
- Formulate an algorithm to find the number of total nodes in a binary tree. What is the complexity of your algorithm?
- 3. What is Tower of Hanoi problem? Draw the recursive tree diagram for the solution of Tower of Hanoi problem, where the number of disks is 4 and number of pages is 3.
- 4. Explain the following operations on a binary search tree with suitable algorithms:
 - (a) Find a node
 - (b) Insert a node
 - (c) Delete a node
- 5. Explain the following operations with pseudocode in a doubly circular linked list:
 - (a) Insert an element
 - b) Delete an element
 - (c) Reverse the list

8AK/350

(Continued)

8AK/350

6. The odd-even transposition sort proceeds as follows:

Pass through the file several times. On the first pass, compare x[i] with x[i+1] for all odd i. On the second pass, compare x[i] with x[i+1] for all even i. Each time that x[i] > x[i+1], interchange the two. Continue altering in this fashion until the file is sorted.

- (a) What is the condition for the termination of the sort?
- (b) Write a C function to implement the sort.
- (c) On the average, what is the efficiency of the sort?
- 7. Construct an inorder threaded binary tree (TBT) for the given tree. Illustrate its node structure. Also show the memory representation of a complete TBT for this:

8. Define AVL tree. Construct an AVL tree for the following elements:

9. Prove the correctness of Kruskal's algorithm for minimum spanning tree. Draw minimum cost spanning tree for the graph given below and also find its cost:

**

Code: 051403