Code: 100103/100203

B.Tech 2nd Semester Special Exam., 2020

(New Course)

CHEMISTRY

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer any seven questions in brief: 2×7=14
 - (a) Arrange the following in increasing order of stability:

$$N_2$$
, N_2^+ , N_2^- , N_2^{2-}

- (b) Transition metal ions like Cu⁺ and Ag⁺ are colourless. Why?
- (c) Which of Cr⁺ or Cu⁺ is expected to be coloured?

(Turn Over)

20AK/837

- (d) 13C is NMR active, but 12C is not. Why?
- (e) What is the direction of a reaction when $\Delta G = 0$?
- (f) Why is work not a state function?
- (g) Write the relationship between parts per million (ppm) and Clarke's degree (*Cl).
- (h) What is critical temperature of a gas?
- (i) Arrange the following ligands in order of increasing field strength:

CN-, CO, H2O, NH3

(j) Arrange the following in order of their increasing reactivity in nucleophilic substitution reaction:

CH₃F, CH₃I, CH₃Br, CH₃Cl

- (a) At what temperature will water boil when the applied pressure is 528 mm of Hg? (Latent heat of vaporisation of water = 545.5 cal/g)
 - (b) At NTP, 2.8 L of O₂ were mixed with 19.6 L of H₂. Calculate the increase in entropy (assume ideal gas behaviour).

- The equilibrium constants for the reaction $H_2(g) + S(s) \Rightarrow H_2S(g)$ are 18.5 at 925 K and 9:25 at 1000 K. Calculate standard enthalpy of the reaction. Also calculate ΔG° and ΔS° at 925 K.
- 3. (a) The uncertainties in the position and velocity of a particle are 95×10⁻¹⁰ m and 5.5 × 10⁻²⁰ ms⁻¹, respectively. Calculate the mass of the particle. $(h = 6.626 \times 10^{-34} \text{ J-s})$
 - (b) Calculate the kinetic energy of a moving electron which wavelength of 4.8 pm. (Mass electron = 9.11×10^{-31} kg)
 - Discuss the failures of classical mechanics to explain properties of particles at atomic and sub-atomic levels.
- 4. (a) Draw the MO energy-level diagram for O2 and based on the diagram, and explain the magnetic property observed 8 in O_2 , O_2^+ and O_2^- .

20AK/837

- Explain geometrical isomerism and optical isomerism for transition metal complex with an example for each.
- The internuclear distance of NaCl is 5. (a) 2-36×10-10 m. Calculate the reduced mass and moment of inertia of NaCl. (Atomic mass of Cl=35×10-3 kg mol-1 and Na = 23×10-3 kg mol-1
 - Calculate the force constant for CO, if it absorbs at 2-143×105 m-1. (Atomic mass of C=12×10-3 kg mol-1 $Q = 16 \times 10^{-3} \text{ kg mol}^{-1}$
 - How many 1H NMR signals are there (c) in-
 - (i) CH3--CH3;
 - (ii) CH3--CH2--CH3;
 - (iii) CH3-CH2-CI;
 - (iv) CH3-CHCl--CH3;
 - (v) C₆H₅CH₃;

20AK/837

(vi) C₆H₅CH₂CH₃?

(Continued)

(Turn Over)

6

4

5

5

6

- 6. (a) 2 mole of NH₃ at 300 K occupy a volume of 5×10^{-3} m³. Calculate the pressure using van der Waals equation $[a = 0.417 \text{ N m}^4 \text{ mol}^{-2}]$ and $b = 0.037 \times 10^{-3} \text{ m}^3 \text{ mol}^{-1}$. Compare the above result with the pressure calculated using ideal gas equation.
 - (b) Write short notes on the following:
 - (i) Magnetic resonance imaging
 - (iii) Fingerprint region in infrared spectroscopy
 - (iii) Different types of electronic excitations
- 7. (a) Consider the following half-cell reactions:

$$PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2e \rightarrow$$

 $PbSO_4(s) + 2H_2O, E^o = 1.70 V$

PbSO₄(s) + 2e
$$\rightarrow$$
 Pb(s) + SO₄²-(aq),
E° = -0.31 V

Write the cell (in proper cell notation) and the cell reaction. Calculate the value of E° for the cell and the EMF generated if $[H^{+}] = 0.1 M$ and $[SO_4^{2-}] = 2 M$.

20AK/837

(Turn Over)

9

7

(b) A water sample had the following constituents per litre:

CaCO₃ = 81 mg, MgHCO₃ = 75 mg, CaSO₄ = 136 mg, MgSO₄ = 120 mg, NaCl = 4-7 mg

Calculate the quantity of temporary and permanent hardness in the water sample. Calculate the quantity of lime (78% purity) and soda (92% purity) required for softening of 1.5 million litres of the above water sample.

- 8. (a) Describe two methods used for resolving racemic mixtures into optically active compounds.
 - (b) Write the possible optical isomers of tartaric acid and indicate the point of symmetry or plane of symmetry (if any) in the isomers.
 - (c) Differentiate between (i) enantiomers and diastercomers and (ii) racemic mixture and meso compounds.
- 9. (a) How do you decide whether the reaction CH₃Br+OH ⇒ CH₃OH+Br proceeds by S_N1 or S_N2 reaction? Give justification in favour of your answer.

(Continued)

7

4

5

5

- (b) Draw the energy profile diagram for the following reaction :
 - (CH₃)₃CBr + OH⁻ → (CH₃)₃COH + Br⁻
- (c) Write short notes on the following: 6
 - (i) Steric effects
 - (ii) Diels-Alder reaction

^{₹0AK}-700/837