Code: 031607

masterranjeet.com

B.Tech 6th Semester Exam., 2019

ELECTRICAL INSTRUMENTS AND MEASUREMENTS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **MINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer any seven of the following questions:

2×7=14

- (a) Give the merits and demerits of moving iron instrument.
- (b) Give merits and demerits of permanent magnet moving coil instruments.

(c) What is a low-power factor electrodynamometer type wattmeter?

(d) Explain displacement constant and the constant of inertia for a glavanometer.

(e) Write advantages and precautions to be considered for a Wheatstone bridge.

(f) Explain ammeter shunt using schematic diagram.

- (g) How is leakage flux determined in a dynamic-electric machinery?
- (h) Give the merits and limitations of digital techniques.
- Explain general working principle of a potentiometer.

Explain deflecting torque in moving iron instruments using mathematical expressions.

AK9/833

(Turn Over)

A 3-phase balanced load connected across a 36, 400 V AC supply draws a line current of 10 A. Two wattmeters are used to measure input power. The ratio of two wattmeter reading is 2:1. Find the readings of the two wattmeters.

Discuss induction type wattmeters and between comparison give induction and dynamometer wattmeters.

5

5

7

working principle Write attraction-type moving iron instruments using schematic diagrams.

3. (a) A current transformer with a bar has 350 turns in its secondary winding. The resistance and reactance of the secondary circuit are 2Ω , 1.5Ω respectively including the transformer winding. With 6 A flowing in the secondary winding, the magnetising m.m.f. is 120 ampere-turns and the iron loss is 1.5 watts. Determine the ratio and phase-angle errors.

(b) Draw and discuss the phasor diagram of a potential transformer and explain characteristics of potential transformers.

7

Discuss vibration galvanometer using 4. (a) sufficient schematic diagrams and give its general features.

5

A galvanometer has the inertia constant 1.5, damping constant 6, deflection constant 8000 Nm/ampere. Determine the value of the restoring constant that would give critical damping. Under these conditions what will be the transient deflection when a current of 1 milli-ampere is being measured? What will be the deflection at the end of 2 seconds?

5

Determine the number of turns in a suspended coil of a galvanometer having 3.5 mm × 2.5 mm mean area and situated in a magnetic field of 1.5 T. The moment of inertia of the moving parts is 0.30×10^{-6} kg-m and the control spring constant is 35×10⁻⁶ Nm-radian. A current of 12 mA produces a deflection of 110°.

5. (a)	Discuss standardization, applications and precautions for a slide wire DC potentiometer.	5
_(b)	Discuss Wheatsone bridge and its sensitivity analysis.	5
(0)	A four terminal resistance of approximately 60 μΩ was measured by Kelvin's double bridge. The bridge has the standard resistance $140\cdot03$ μΩ, inner ratio-arms $260\cdot62$ Ω and 420 Ω, outer ratio-arms $230\cdot62$ Ω and 490 Ω. The resistance of the link connecting the standard and unknown resistances is 810 μΩ. Calculate the unknown resistance.	4
6. (a)	The cores of two identical transformers A and B carry alternating fluxes whose instantaneous values are $0.01 \sin 314t \text{ Wb}$ and $0.012 (1.1 \sin 628t + 0.1 \sin 1884t)$ Wb respectively. Find the ratio of eddy current loss of B to A . Find also the ratio of hysteresis loss of B to A .	7
(b)	Discuss any two AC bridge methods.	7

(Turn Over)

7.	(a)	Discuss the performance characteristics of digital to analog conversions.	5
	(b)	Determine the output voltage caused by each bit in a 6-bit ladder if the input levels are $0 = 0$ V and $1 = +16$ V. Determine the resolution and full-scale output of this circuit.	4
	(c)	Discuss ramp analog to digital conversion.	5
8.	(a)	Draw and discuss the phasor diagram of a current transformer and explain the characteristics of current transformers.	7
	(b)	Discuss ballistic galvanometer and explain any one method for the calibration of ballistic galvanometer.	7
9.	(a)	Discuss two wattmeters method of power measurement for star and delta connection. Further, derive the expression of power factor using the phasor diagram of star connected inductive load.	

(b) Discuss Drysdale AC polar potentiometer and Gall Tinsley AC potentiometer.

7

* * *

AK9-3060/833

Code: 031