Code: 103201

B.Tech 2nd Semester Exam., 2019

(New Course)

PHYSICS

(Waves and Optics, and Introduction to Quantum Mechanics)

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.
- (v) Symbols used (if any) have their usual meanings.
- 1. Answer any seven questions of the following:

 $2 \times 7 = 14$

- (a) Write down the equation of mechanical simple harmonic oscillator.
- (b) What do you mean by standing waves?
- (c) It is desired to use a plate of glass to obtain polarized light. If the refractive index of glass is 1.5, what is the polarizing angle?
- (d) What is Rayleigh criterion for limit of resolution?

- (e) Define Huygens' principle.
- (f) Define population inversion.
- (g) Write down time-dependent Schrödinger wave equation.
- (h) Define Fermi level.
- What are intrinsic semiconductors?
- (j) Write down normalized wave function of a particle in a box of length L.
- 2. Discuss the case of damped simple harmonic motion. Also discuss the cases of heavy damping and critical damping. What is the quality factor of a damped simple harmonic oscillator? http://www.akubihar.com 6+6+2=14
- 3. Write short notes on the following: 5+5+4=14
 - (a) The wave equation on a string
 - (b) Impedance matching
 - (c) Acoustics waves
- 4. Derive Fresnel equations. Define reflectance and transmittance. 8+6=14
- 5. Write short notes on :

7+7=14

- (a) He-Ne laser
- (b) Ruby laser

AK9/685

AK9/685

(Turn Over)

 Showing neat ray diagram, discuss Newton's rings experiment. Derive the expression for diameter of dark rings in Newton's ring.

6+8=14

Code: 103201

- 7. Discuss Heisenberg uncertainty principle.

 Also discuss the application of uncertainty principle in non-existence of electron in the nucleus.

 6+8=14
- 8. Define Bloch's theorem for particles in a periodic potential. Discuss Kronig-Penney model in detail.
 4+10=14
- 9. Derive an expression of intensity for Fraunhofer diffraction from a single slit. Also discuss the cases of the maxima and minima. In a single-slit diffraction setup, screen is placed 2 m away from the lens to obtain diffraction pattern. If the slit width is 0.2 mm and the first minimum lies 5 mm on either side of the central maxima, find the wavelength of the light.

 5+5+4=14
