Code: 011617

## B.Tech 6th Semester Exam., 2018

## DESIGN OF CONCRETE STRUCTURE—I

Time: 3 hours

Full Marks: 70

## Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following (any seven): 2×7=14
  - (a) The temperature reinforcement in the vertical slab of a T-shaped RC retaining wall is
    - (i) not needed
    - (ii) provided equally on inner and front faces
    - (iii) provided more on inner face than on front face
    - (iv) provided more on front face than on inner face

- (b) Diagonal tension in a beam
  - (i) is maximum at neutral axis
  - (ii) decreases below the neutral axis and increases above the neutral axis
  - (iii) increases below the neutral axis and decreases above the neutral axis
  - (iv) remains same
- (c) The purpose of reinforcement in pre-stressed concrete is
  - (i) to provide adequate bond stress
  - (ii) to resist tensile stresses
  - (iii) to impart initial compressive stress in concrete
  - (jv) All of the above

- (d) To minimize the effect of differential settlement, the area of a footing should be designed for
  - (i) dead load only
  - (ii) dead load + live load
  - (iii) dead load + fraction of live load
  - (iv) live load + fraction of dead load
- (e) When shear stress exceeds the permissible limit in a slab, then it is reduced by
  - increasing the depth
    - (ii) providing shear reinforcement
    - (iii) using high strength steel
  - (iv) using thinner bars but more in number
- (f) Critical section for shear in case of flat slabs is
  - at a distance of effective depth of slab from periphery of column/drop panel
    - (ii) at a distance of d/2 from periphery of column/capital/drop panel

(Turn Over)

- (iii) at the drop panel of slab
- (iv) at the periphery of column

- (g) The centroid of compressive force from the extreme compression fiber in limit state design lies at a distance of
  - (i)  $0.367x_{ij}$
  - $(\vec{u}) 0.416x_u$ 
    - (iii) 0.446xu
  - (iv)  $0.573x_{u}$

where  $x_u$  is the depth of neutral axis at the limit state of collapse.

- (h) For a reinforced concrete section, the shape of shear stress diagram is
  - (i) wholly parabolic
  - (ii) wholly rectangular
  - parabolic above neutral axis and rectangular below neutral axis
    - (iv) rectangular above neutral axis and parabolic below neutral axis
- (i) A beam curved in plan is designed for
  - (i) bending moment and shear
  - (ii) bending moment and torsion
  - (iii) shear and torsion
  - (iv) bending moment, shear and torsion

|    | G)  | Minimum pitch of transverse reinforce-<br>ment in a column is                                                                                                                    |   |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    |     | (i) the least lateral dimension of the member                                                                                                                                    |   |
|    | L   | sixteen times the smallest diameter of longitudinal reinforcement bar to be tied                                                                                                 |   |
|    |     | (iii) forty-eight times the diameter of transverse reinforcement                                                                                                                 |   |
|    |     | (iv) lesser of the above three values                                                                                                                                            |   |
| 2. | (a) | What is the purpose of serviceability requirement?                                                                                                                               | 7 |
|    | (b) | Distinguish among the working stress<br>method, ultimate load design and limit<br>state design.                                                                                  | 7 |
| 3. | (a) | Calculate the maximum moment that can be sustained by a beam with $b = 250$ mm, $d = 400$ mm and $A_{st} = 3600$ mm <sup>2</sup> . Assume $f_{ck} = 20$ MPa and $f_y = 415$ MPa. | 7 |
|    | (b) | Under what circumstances are doubly reinforced beams used? What are the advantages of doubly reinforced beams over singly reinforced beams?                                      | 7 |

| 4. | A rectangular beam of size 250 mm width      |
|----|----------------------------------------------|
|    | and 500 mm effective depth is reinforced     |
|    | with four bars of 25 mm diameter. Determine  |
|    | the required vertical shear reinforcement to |
|    | resist factored shear force of (a) 80 kN,    |
|    | (b) 300 kN and (c) 600 kN. Consider concrete |
|    | of grade M-20 and steel of grade Fe-415.     |
|    |                                              |

↓ 5. Design a floor slab for an interior room with clear dimensions of 3.0 m × 8 m for a building located in Mumbai. The slab is resting on 230 mm thick masonry walls. Assume live load as 3.0 kN/m² and dead load due to finish, partition and so on as 1.2 kN/m². Use M-20 concrete and Fe-415 steel.

14

14

6. A T-beam floor consists of 150 mm thick R-C slab monolithic with 300 mm wide beams. The beams are spaced at 3.5 m center to center and their effective span is 6 m. If the superimposed loads on the slab is 5 kN/m<sup>2</sup>, design an intermediate T-beam. Use M-20 mix and Fe-250 grade steel.

14

8AK/421

(Continued)

7. Design the torsional reinforcement in a rectangular beam section 350 mm wide and 750 mm deep subjected to an ultimate twisting moment of 140 kN-m combined with ultimate BM of 200 kN-m and ultimate SF of 110 kN. Assume M-25 concrete and Fe-415 grade of steel.

14

8. Design a reinforced concrete column which is 4.5 m long and fixed at both ends. It is carrying an axial load of 2000 kN. Use M-25 concrete and Fe-415 steel.

14

 Design a rectangular beam section subjected to an ultimate moment of 120 kN/m. Use concrete M-20 and stee Fe-415. Adopt limit state method.

14