B.Tech 7th Semester Exam., 2020

DESIGN OF HYDRAULIC STRUCTURE

Time: 3 hours Full Marks: 70

Instructions:

- (i) All questions carry equal marks.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsoru.
- 1. Choose the correct option (any seven) :
 - (a) For a triangular dam section of height H for just no tension under the action of water pressure, self-weight and uplift pressure, the minimum base width required with usual notation is
 - (i) $\frac{H}{S-1}$
 - (ii) $\frac{H}{(S-1)^2}$
 - (iii) $H = \frac{f}{W\sqrt{(S-C+1)}}$
 - (iv) $\frac{H}{\sqrt{S-1}}$

- (b) Outlets which maintain a constant discharge irrespective of the fluctuations in the water level of supply channel and water course are known as
 - (i) non-modular outlets
 - (ii) rigid modules
 - (iii) semi-modular outlets
 - (iv) Kennedy's gauge outlets
- (c) The rate of seepage through an earth dam obtained from a flow net is given by (with usual notations)
 - (i) $q = Kh(N_d \times N_f)$
 - (ii) $q = Kh(N_d/N_f)$
 - (iii) $q = Kh(\sqrt{N_f/N_d})$
 - (iv) $q = Kh(N_f / N_d)$
- (d) According to Khosla's theory for a hydraulic structure built on pervious foundation, a cutoff is quite essential at
 - (i) the upstream end
 - (ii) the mid-section
 - (iii) some intermediate sections
 - (iv) the downstream end
- (e) The undersluices in a diversion headwork are provided with a crest level
 - (i) same as the rest of the weir
 - (ii) lower than the rest of the weir
 - (iii) higher than the rest of the weir
 - (iv) same as the crest of the head regulator

- (f) According to Khosla's theory, exit gradient is given by (with usual notation)
 - (i) $G_E = \frac{H}{d} \frac{1}{\pi \sqrt{\lambda}}$
 - (ii) $G_E = \frac{H}{d} \pi \sqrt{\lambda}$
 - (iii) $G_E = \frac{d}{H} \frac{1}{\pi \sqrt{\lambda}}$
 - (iv) $G_E = \frac{d}{H}\pi\sqrt{\lambda}$
- (g) Gibbs' module is a type of an outlet which
 - (i) ensures a constant discharge irrespective of the fluctuations in the water level of supply channel and water course
 - (ii) ensures a constant discharge irrespective of the fluctuations in the water level of water course
 - (iii) does not ensure constant discharge irrespective of the fluctuations in water level of supply channel and water course
 - (iv) ensures a constant discharge irrespective of the fluctuations in the water level of supply channel

- (h) The structure which serves the purpose of a safety valve for a canal is
 - (i) canal escape
 - (ii) cross regulator
 - (iii) head regulator
 - (iv) canal fall
- (i) Lining of irrigation channels
 - (i) increases the possibility of area to be waterlogged
 - (ii) does not affect the phenomenon of waterlogging
 - (iii) is an effective anti-waterlogging measure
 - (iv) increases the maintenance cost of the channels
- (j) In Mitra's method of design of channel transitions, the depth of flow is assumed to be
 - (i) varying in the transitions and the trough
 - (ii) varying only in the contraction transition
 - (iii) varying only in the expansion transition
 - (iv) constant in the transitions as well as in the trough

- 2. Illustrate the following with the help of neat sketches:
 - (a) Investigate the effect of shifting the floor relative to a barrier on uplift pressure, and comment on corresponding floor thickness.
 - (b) Investigate the effect of upstream and downstream sheet piles (individually and combined) on the design of impervious floor of hydraulic structures.
 - (c) Give relevance, significance and design of notch canal fall.
- **3.** Determine afflux in syphon aqueduct for the data given below:
 - (i) Diameter of the barrel (single) = 3 m
 - (ii) Length of the barrel = 90 m
 - (iii) Discharge through the barrel = 25 cumecs
 - (iv) Friction factor (in Darcy-Weisbach formula) = 0.013
 - (v) Coefficient of bend (2 bends) = 0.10
 - (vi) Coefficient of head loss in expansion at outlet = 0.20
 - (vii) Coefficient of head loss in contraction at inlet = 0.10

Neglect velocity head in drainage channel.

- 4. What is meant by river basin development? Give different aspects, scope and some case studies for river basin development.
- 5. Following particulars were recorded from a barrage site:
 - (i) Maximum reservoir level = 212 m
 - (ii) Pond level = 211 m
 - (iii) Downstream high flood level = 210 m
 - (iv) Maximum design discharge = 3500 cumecs
 - (v) Crest level of the barrage = 207 m
 - (vi) Crest level of the head regulator = 208 m
 - (vii) Coefficient of discharge = $2 \cdot 10 \,\mathrm{m}^{\frac{1}{2}}/\mathrm{s}$ for barrage; $1 \cdot 50 \,\mathrm{m}^{\frac{1}{2}}/\mathrm{s}$ for head regulator
 - (viii) River bed level = 205 m
 - (ix) Design discharge for main canal = 500 cumecs

Determine the number of gates required for barrage and head regulator if each gate has 10 m clear span.

Neglect end contractions due to piers and abutments and velocity head.

- 6. (a) Find the expressions for stresses (normal, principal and shear) developed in the elementary profile of a gravity dam.
 - (b) Sketch uplift pressure at the base of a gravity dam, when (i) there is no drainage gallery and no tail water depth; (ii) there is drainage gallery and no tail water depth; (iii) both drainage gallery and tail water are present.
- Describe with neat sketches various methods adopted for controlling seepage through the body of the dam and through foundation.
- 8. Following data were obtained from the stability analysis of a concrete gravity dam:
 - (i) Total overturning moment about toe = 1×10^5 t-m
 - (ii) Total resisting moment about toe $= 2 \times 10^5 \text{ t-m}$
 - (iii) Total vertical force about base = 5000 t
 - (iv) Base width of dam = 50 m
 - (v) Slope of the d/s face = 0.8 H:1V

 Calculate the maximum and minimum vertical stress to which the foundation will be subjected to. What is the maximum principal stress at toe (assume no tail water)?

9. Design a cross regulator and a head regulator for a distributary channel taking off from the parent channel for the following data:

Discharge of the parent channel = 100 cumecs

Discharge of the distributary
= 15 cumecs

FSL of the parent channel = u/s 208.10d/s 207.90

Bed width of parent channel = u/s 42 m; d/s. 38 m

Full supply water depth in the parent channel = u/s 2.5 m; d/s 2.5 m

FSL of distributary = 207·10 m

Bed width of distributary = 15 m

Full depth of water in the distributary

Permissible Khosla's safe exit gradient = 1/6

Code: 011725

* * *