OT6003

OT6003

11602 2019(Odd) **Old Syllabus**

Time : 3Hrs.

Sem. VI - Ag **M.O.S**.

Full Marks: 80

Pass Marks: 26

Answer all 20 questions from Group A, each question carries 1 marks.

ग्रुप-A से सभी 20 प्रश्नों के उत्तर दें, प्रत्येक प्रश्न का मान 1 अक है।

Answer all **Five** questions from **Group B**, each question carries 4 marks.

ग्रुप–B से सभी पाँच प्रश्नों के उत्तर दें, प्रत्येक प्रश्न का मान 4 अंक है।

Answer all *Five* questions from *Group* C, each question carries 8 marks.

ग्रुप—C से सभी पाँच प्रश्नों के उत्तर दें, प्रत्येक प्रश्न का मान 8 अक है।

All parts of a question must be answered at one place in sequence, otherwise they may not be evaluated.

एक प्रश्न के सभी अंशों का उत्तर एक ही जगह (लगातार क्रम में) होना चाहिए. अन्यथा वे जाँचे नहीं जा सकते हैं।

The figure in right hand margin indicate marks. दाएँ पार्श्व के अक पूर्णांक के सूचक हैं।

11602

एक आयताकार स्टूट 150mm x 120 mm मोटा है। 180KN का भार मोटाई के अर्द्धविभाजित करने वाले तल से 10 mm की उत्केन्द्रिता पर कार्य कर रहा है। काट में अधिकतम एवं न्यूनतम प्रतिबल तीव्रता ज्ञात करें।

A cantilever beam 2m long is subjected to uniformly 9. distributed load of 4KN/m over its entire length. Find the slope and deflection of the cantiliver beam at its free end. Take $EI = 2.5 \times 10^{12} \text{ N-mm}^2$

8 एक 2m लम्बे बाहधरन पर 4KN/m का समवितरित भार पूरी लम्बाई पर लग रहा है। बाहधरन के मुक्त सिरे पर ढाल एवं विक्षेप ज्ञात करें। $EI = 2.5 \times 10^{12} \text{ N-mm}^2 \text{ मान } \vec{e}$

OR(अथवा)

A simply supported beam of span 4m is carrying a uniformly distributed load of 4KN/m over the entire span. Find the maximum slope and deflection of the beam. Take EI for the beam as 80×10^9 N-mm²

एक 4m पाट वाले शुद्धालम्ब धरन पर 4KN/m का समवितरित भार पुरी लम्बाई पर लग रहा है । धरन का अधिकतम विक्षेप एव ढाल ज्ञात करें। धरन की $EI = 80 \times 10^9 \text{ N-mm}^2 \vec{e} I$

P.T.O

। र्रक जाह रुप्रार्थरञ्म किमुड प्क I खड का उपरी फ्लेंज 10 cm x 20 cm, वेब

61

maximum and average shear stress. Sketch the shear stress distribution and determine cross section 200mm wide and 400mm deep. simple supported span of 4m. It has rectangular A wooden beam support U.D.L. of 40KN/m over a .8

8

<u>रिक ठाह ७७६१ </u> முகமக நர நைதி முகமக சுநகிக ந र्रक छर्रास क ाण्ठत्रती लग्नतीय ाणमल्रमस | ई रिडाग типод ру हिंकि mm002 छछ प्रावाताया विविध दिसका है, 40KN/m का समवितरित भार वहन करता है। एक लकड़ी के धरन जिसका पाट 4m है शुद्ध लम्ब

OB(સેજ્ઞેવા)

and mi and minimum intensities of stress in the in a plane bisecting the thickness. Find the carries a load of 180KN at an eccentricity of 10 mm A rectangular strut is 150mm x mm021 si turts relagnet A

section.

£009TO

7

GROUPA

 $1 \times 50 = 50$: suondo Choose the most suitable answer from the following **.**I

: छिनि एकम्ह कि म्लकनी का प्रयोगम

 $\theta 2 ni S \sigma (s)$:si nottoos inclined at angle θ to the normal of the stress on an oblique section of the body stress(σ)in one plane, then the tangential When a body is subjected to a direct tensile (I)

 $(q) \frac{1}{Q} Cos2\theta$ $\theta Z uiS \frac{1}{2} Sin2\theta$

 $\theta cosc\theta$

- θ2ni2o (Ѥ) -गिर्मित के लिब्रीय प्रीडिम्म कि ई डिप्र समतल जो काट के अभिलम्ब से 0 कोण बना **БР ФУ โБ โ3 I3У УФ РГФ УР РБ ФУ** जब एक पिण्ड पर प्रत्यक्ष तनाव प्रतिबल(त)

(i)

70911

- (<u>e</u>) αCos2θ
- $(\mathfrak{A}) \quad \frac{5}{\Omega} \operatorname{Sin2\theta}$
- ($\underline{\epsilon}$) $\frac{5}{2}$ Cos50

11602

GROUP C

18

Answer all Five Questions.

 $8 \ge 5 = 40$

सभी पाँच प्रश्नों के उत्तर दें

7. Calculate the principal stresses and maximum shear stress for the following case of two perpendicular direct stress together with complimentary shear stresses. Draw diagram showing the position of principal planes & plane of maximum shear stress relative to the plane of applied stress. $p_1 = 90 \text{ N/mm}^2$, $p_2 = 30 \text{ N/mm}^2$ (both tensile) $q = 15 \text{ N/mm}^2$

दो समकोण अभिलम्ब के साथ—साथ पूरक अपरूपण प्रतिबल के निम्नलिखित केस में मुख्य प्रतिबल एव अधिकतम अपरूपण प्रतिबल का मान ज्ञात करें। मुख्य समतल एव अधिकतम अपरूपण समतल लगाए प्रतिबल के तल की सापेक्ष स्थिति का आरेख करें। $p_1 = 90 \text{ N/mm}^2, p_2 = 30 \text{ N/mm}^2$ (दोनों तनाव) $q = 15 \text{ N/mm}^2$

OR(अथवा)

Find the centroid of the I-section having top flange 10 cm x 20cm, web 12cm x 2cm and bottom flange 18cm x 2cm.

(ii) For the principle planes which of the following statement is correct?

3

- (a) Shearing stress is zero and normal stress has extreme value
- (b) Shearing stress is maximum and normal stress is zero
- (c) Normal stress is zero
- (d) All of the above
- (ii) मुख्य तल के लिए निम्न में से कौन कथन सही है?
 - (अ) अपरूपण प्रतिबल शून्य एंव अभिलम्ब प्रतिबल अधिकतम होता है
 - (ब) अपरूपण प्रतिबल अधिकतम एवं अभिलम्ब प्रतिबल शून्य होता है
 - (स) अभिलम्ब प्रतिलब शून्य होता है
 - (द) उपरोक्त सभी
- (iii) The c.g. of a trapezium with parallel side a and b and height h, measured from the side a is:

(a) $\frac{h}{3} \left(\frac{b+2a}{b+a} \right)$ (b) $\frac{h}{3} \left(\frac{2b+a}{b+a} \right)$ (c) $\frac{h}{3} \left(\frac{a+b}{2a+2b} \right)$

(d) None of the above

					Den:	streto
				əmos bna some	s fibres get contrac	
					bres of beam get c	
					bres of beam get s	
					o si gniwollof odf?	
				guibned of to bending	ns uotiose-section su	(v) In a bean
	वेबल उत्पन्न होता है?	<u> በ</u> ሞ አገጭ ለ			हिम ट्रेकि में कि	<u>کہ (۶)</u>
सलाम विभ	प्रकामले बेलनाकार	אויתועס פא				mm (Ħ)
- • •		-				(<u>e)</u> KN
िर्रक छ <i>िन्नि</i> कि	गिए के जिन्न कि लिंग के	मतला बेलन			t	.,mm (Æ)
						-ई फाल
	pressure?	to an internal		िव्यक्त किया	णियारः १७३७ ।क	кв фу (vi)
shell subjected	leoina thin cylindrical	stresses indu			sof the above	əuoN (b)
what types of	ria for a thin cylinder.	State the crite				(c) uuu_3
5 , , , , , , , , , , , , , , , , , , ,					_z uuu	$(p) KN^{(u)}$
					100 0	and (a) mm ⁴
	OB (अन्नचा)			יון מרכא רמון טר	nent of inertia of a	expressed non an The mon
				eq 000 6010 00	e fo citroni fo tuon	uom ədT (vi)
	<u>्रई бाइमम</u> ्र 1एक गारि	ዙ ዙኮቀነንት		हि।	न् ड्रेकि <u>ि</u> कि	كەت (ى)
	• •	• • -			$\left(d\overline{2+b}\right)$	(4) $\frac{3}{4} \left(\frac{5}{8}\right)$
क एग्रि	<u> </u> ச்சு நறிபூதிர (சு ந	<u>फ्री</u> लक्लीई			(q+t	<i>γ</i>) μ (μ)
†		· Guuda			$\left(\frac{\mathbf{p}}{\mathbf{p}}\right)$	$\frac{q}{qz}$
		Spring?			(0+ 0	10/4 -
t by stafficts of	neam si tshW . Bring l	Define helica	•9		$\left(\frac{\mathbf{b}2\mathbf{a}}{\mathbf{b}\mathbf{a}\mathbf{b}}\right)$	$\left(\frac{q}{-q}\right)\frac{\varepsilon}{U}$ (132)
				-		–ई 1त्ताई
		<u> र्रक</u>		र्मि कि मि कि क्रिक	ह हा <i>ल</i> में हो।	उन्छ १८४४
क फ़िफाम 5,क	गाष्ट्र की तुलना ठोम शाप	खाखपी शाम		d <mark>Þ</mark> 7 ه کاله و d	भुम्न के समानान्तर	онь фу (iii)
70911	LΙ	E009 J	LO	£0091O	Þ	11602
	2 •	20071			*	00711

shows of the above (d)

1160	2 16	ОТ6003	ОТ6003	5 11602	
	उत्केन्द्रता की सीमा को परिभाषित करे खंड के लिए यह सीमा प्राप्त करें।	ि। वृत्तीय	(v)	यदि किसी धरन का अनुप्रस्थ काट पर बंकन लग रहा हो तो निम्न में से कौन सही है– (अ) धरन की सभी रेशा खिंच जाती है	
4.	What is the relation between slope, def radius of curvature of a simply support	ted beam? 4		(ब) धरन की सभी रेशा सिकुड़ जाती है (स) कुछ रेशा सिकुड़ जाती है तथा कुछ खिंच जाती है (द) उपरोक्त में से कोई नहीं	
	एक शुद्धालम्ब धरन के ढाल, विक्षेप एक	व बक्रता			
	त्रिज्या के बीच सम्बन्ध क्या है?		(vi)	An inverted T-section is subjected to shear force F. The maximum stress will occur at: (a) Top of the section	
	OR(अथवा)			(b) Junction of web and flange(c) Neutral axis of the section(d) None of these	
	Describe the limits for use of Euler for	mula for		(d) None of these	
	both ends and fixed column		(vi)	एक उल्टे T-काट पर अपरूपण बल F लग रहा हो तो अधिकतम अपरूपण प्रतिबल	
	दोनों सिरा आबद्ध स्तभ्भ के लिए यूलर	र के सूत्र की		उत्पन्न होगा	
	सीमाओं का वर्णन करें।			(अ) काट की ऊपरी सतह पर (ब) वेब एवं फ्लैंज के मिलने के स्थान पर (स) काट के उदासीन अक्ष पर	
5.	What do you mean by Slenderness rational states and the state of the s			(द) इनमें से कोई नहीं	
	किसी स्तम्भ की तनुता अनुपात से आप तात्पर्य है?	4 ाका क्या	(vii)	When a rectangular section of a beam is subjected to a shearing force the ratio of maximum shear stress to the average shear	
	OR(अथवा)			stress is : (a) 2.0 (b) 1.75 (c) 1.25	
	Compare hallow shaft with solid shaft	by strength.		(d) 1.5	
				P.T.O	

11602

तीन मान्यताओं को लिखें।			र्ड एरडा के लिबल का उदाहरण है?	
श्रुद्ध नमन क्या ई े शुद्ध नमन के सिद्धांत की			निम्न में से कौन सी निर्माण सरबना प्रत्यक्ष	(IIIV)
†	Suppo ou	in theory of pu		
suondunsse əə.y	t nwob stirt Write down t		evods and the above	
.' 1			(c) Chimney shaft	
िंड ाथाम्फ्रीम कि	ारण्ही कि माइर्रडाण	कु णिष्ठाहरूल	nmulos gnol (d)	
		, ,	(a) Retaining wall	
of gyration.	nt of inertia and radius	Define momen	stress conditions?	
			example of combined bending and direct	
0४(अञ्चया)			Which of the following structural member is	(iiiv)
	्रह्न तिर्णाध्रम्ब स्थित	ቅዞ ን ዞ ኮንወ		
बल चात	निर छम् ाश्त ई ाभ		c.r (<u>ㅋ</u>)	
	- · ·	`	(祖) 1-25	
determining principal stresses?		d gninimrətəb	S7.۲ (ه)	
2. What is Mohr's circle and what is its use in			(纽) 5.0	
$\mathbf{t} \mathbf{x} \mathbf{z} = 50$	<u>र्क भूमछ</u>	र्क <u>ि</u> म्हिप्र कॉंग मिम्न	पवं औसत अपल्पण प्रतिबल का अनुपात होगा–	
	nswer all Five Questions.		बल लगा हो ए। अछिकतम अपरूपण प्रतिबल	
CBOUP B			जब एक धरन के आथताकार खंड पर अपरुपण	(iiv)
70911	SI	£0091O	۶ OT6003	70911

சு நூல் (ச)

5,लााष्ट निमर्छा (म्र)

मिक्त सिम्प

अ़ष्ति किश्म (स्र)

OB(સેજ્ઞવા)

Define limit of eccentricity. Find this limit in case of circular section

11602	14	ОТ6003	ОТ6003	7 11602
(xix)	पतला सेल में परिधिय प्रतिबद समान्य चिन्ह के साथ (अ) $\frac{pd}{4t}$ (ब) $\frac{pd}{2t}$ (स) $\frac{pd}{2t^2}$ (द) $\frac{pd^2}{2t}$	न होता है	(ix)	A Simply supported beam of span 'l' and flexural higility EI is carrying a point lord W at its centre, the deflection at centre is (a) $\frac{Wl^3}{12EI}$ (b) $\frac{Wl^3}{16EI}$ (c) $\frac{Wl^3}{24EI}$
(xx)	In a thin spherical shell, the h given by: (a) $\frac{pd}{2t}$ (b) $\frac{pd}{3t}$ (c) $\frac{pd}{4t}$ (d) $\frac{pd^2}{2t}$	oop stress is	(ix)	(d) $\frac{Wl^3}{48EI}$ एक शुद्धालम्ब धरन का पाट 'l' एवं नमन दृढ़ता EI के पाट के मध्य बिन्दु पर W अधिक केन्द्रित भार कार्य कर रह रहा है तो धरन के मध्य पर विक्षेप का मान होगा।
(xx)	पत्तला गोलीय सेल में हुप प्रति (अ) $\frac{pd}{2t}$ (ब) $\frac{pd}{3t}$ (स) $\frac{pd}{4t}$ (द) $\frac{pd^2}{2t}$	तेबल होता है–		(अ) $\frac{Wl^3}{12EI}$ (ब) $\frac{Wl^3}{16EI}$ (स) $\frac{Wl^3}{24EI}$ (द) $\frac{Wl^3}{48EI}$

P.T.O

11905	£I	£009TO	£0091O	8	70911
fo slare and and	riqs coiled helical spri	втоЯ (iiivx)	neas omes to eme	Two simply supported be	(x)
		yilən (carry the same load. If the	
	0			the total load as a point lo	
	⁰ ² and ²⁰		whole span, then	and other U.D.L. over the	
	ot lauf		ter first for the first	the ratio of maximum slop	
	$^{0}01$ of	(c) ς_0		beam to second will be:	
	0 to 15^{0})1 (b)		[:[(b) č .[:[(d)	
				$[:\hat{c},\hat{l}(3)]$	
ाक ए क्तिहिं मि	ग [्] ष्म्री	(IIIAX) פּר <u>ל</u>		1:2 (b)	
	। ई 16वि	णिक			
	मक ⁰ 5 मि ⁰	5 (胫)		दी शुद्धालम्ब धरन समान	(x)
			• • • •	वहन करते हैं यहि महला	
	<u>र्भावर</u> क		· · ·	ग प्राम तर्झी कं झीछ में एउम '	
	b ₀	ら (形)	- ,	ф уге рбпрев ур эгр	
	$0_0 \not = 12_0$	Γ (<u></u>)		हो पाइले एवं दूसरे धर	
			-	- ााग्ह जायनुपात होगा -	
l stress is given	nin shell, circumferentia	then I (xix)		[:[(E)	
	with usual rotations.			さ.1:1 (丙) 1:2.1 (円)	
				「:C.T (ア) [:2 (戸)	
	Ĩ	(a) $\frac{pq}{4\hbar}$		1.7 (>)	
	-		cantilever carrying	The maximum slope of a	(ix)
		$\frac{17}{2}$ (q)		a point load 'W' at its free	
	I	od (^c)		(a) Fixed end	
		(c) $\frac{54}{bd}$		(d) Centre of span	
	7	$\frac{17}{2}$ (p)		(c) Free end	
		17 ()		(b) None of these	

11602	12	ОТ6003	ОТ6003	9	11602
(xvi)	एक 'D' व्यास के ठोस शाफ्ट जि प्रतिबल (τ)लग रहा हो, द्वारा प्रे घूर्ण क्या होगा— (अ) $\frac{\pi \tau D^3}{32}$ (ब) $\pi \tau D^2$		(xi)	एक बाहुधरन के मुक्त सिरे पर अधि लग रहा है तो अधिकतम ढाल होग (अ) आबद्ध सिरे पर (ब) पाट के मध्य पर (स) मुकृ सिरे पर (स) इनमें से कोई नहीं	
(xvii)	 (स) <u>πτD³</u> (द) इनमें से कोई नहीं Spring index is the ratio of : (a) Length of the spring to its mediameter (b) Length of the spring to its w (c) Mean coil diameter to the diaspring wire (d) Mean coil diameter to length spring. 	ire diameter meter of the	(xii) (xii)	A column of length ' <i>l</i> ' is fixed at b equivalent length will be equal to: (a) 0.51 (b) 0.7071 (c) 1.01 (d) 2.01 ' <i>l</i> ' लम्बाई के स्तम्म के दोनों सिरा स्तम्म की समतुल्य लम्बाई होगी— (आ) 0.51 (ब) 0.7071	
(xvii)	स्प्रिंग इनडेक्ड का अनुपात होता (अ) स्प्रिंग की लम्बाई एव इसके क्वालड व्यास का (ब) स्प्रिंग की लम्बाई एव इसके (स) औसत क्वालड व्यास एव इस व्यास का (द) औसत क्वालड व्यास एव सि का	औसत तार व्यास का सके तार के	(xiii)	 (刊) 1.01 (刊) 1.01 (日) 2.01 Slenderness ratio of a column mata as the ratio of its length to the (a) Diameter (b) Radius (c) Radius of gyration (d) Cross -section 	•

bone of these (b) None of these (b)		əsəqt	(d) None of t (c) <u>C</u>
(c) $\frac{10}{\pi \tau D_3}$			(p) C1
(p) μτD ² 32			$(\mathfrak{s})\frac{1}{C}$
(a) $\frac{32}{\pi \tau D^3}$		tidity to a circular shaft of rigidity nd poler moment of inertia J:	
equal to: D when subjected to a shear stress (د) is			(द) ईनम <u>े</u> मे (स) न्वॅनपम
Torque transmitted by a solid shaft of diameter			(म) आहकसा (ब) अहिकसा (अ) ब्रान्सि
		कार शाफट के इरस्थ रेशों में ल का मान होता है–	क्रिंग नहेक
(य) इनम <u>ें</u> में कोई नहीं		these	to ano ^N (b)
(4) <u>C</u>			ord (a) numixeM (d) numiniM (d)
(d) C1		ress in the extreme outer fibre of aff under torsion is	a circular sha
(a)]		210	த ல ிர (ந)
दृढ़ता होता है–		गाईर्सन	ार्छ्य्या (म) ह गुर्ख्या (म)
त्वभा मोलर जड़त्व आधूर्ण 1हो तो ऐंठन		। कि जायहुन्छ क जग्र हे।	
काण्ण वित्वाकार शाम्ह जिसका दृढता गुणाक	(AX)	नुता अनुपाव को परिभाषित किया	יללוידן קסן (iiix)
20911 11	E009LO	10 OL(003	11602

11602 21

10. A steel rod 5m long and 40mm diameter is used as a column with one end fixed and other end free. Determine the crippling load by Eulsr's formula. Take E=200GPa

8

OT6003

एक 40mm व्यास एवं 5m लम्बे इस्पात छड़ को स्तम्भ के तरह प्रयोग किया गया है जिसका एक सिरा आबद्ध एवं दूसरा सिरा मुक्त है।यूलर सूत्र से बहकाव भार ज्ञात करें E=200GPa लें।

OR(अथवा)

A solid circular shaft of 100mm diameter is transmitting 120 KW at 150 r.p.m., Find the intensity of shear stress in the staff.

100mm व्यास का एक ठोस वृत्ताकार शाफ्ट 150 r.p.m पर 120 KW प्रेषित कर रहा है। शाफ्ट में उत्पन्न अपरूपण प्रतिबल तीव्रता ज्ञात करें। 8

10. A steel rod 5m long and 40mm diameter is used as a column with one end fixed and other end free. Determine the crippling load by Eulsr's formula. Take E=200GPa

21

एक 40mm व्यास एवं 5m लम्बे इस्पात छड़ को स्तम्भ के तरह प्रयोग किया गया है जिसका एक सिरा आबद्ध एवं दूसरा सिरा मुक्त है।यूलर सूत्र से बहकाव भार ज्ञात करें E=200GPa लें।

OR(अथवा)

A solid circular shaft of 100mm diameter is transmitting 120 KW at 150 r.p.m., Find the intensity of shear stress in the staff.

100mm व्यास का एक ठोस वृत्ताकार शाफ्ट 150 r.p.m पर 120 KW प्रेषित कर रहा है। शाफ्ट में उत्पन्न अपरूपण प्रतिबल तीव्रता ज्ञात करें।

8

II. In a close coiled spring, the diameter of each coil to be 10 times that of wire of the spring and maximum shear stress is not to exceed 60 N/mm².
400N is 10cm. Taking the shear modulus as 9x10⁴N/mm², determine the number of coil, the

77

diameter of the coil and energy stored in the coil.

बन्द क्वायल में क्वायल का व्यास तार के व्यास से 10 गुना एव महत्तम अपरूपण प्रतिबल 60 N/mm² से अधिक नहीं हैं, 400N मार के अधिन महत्तम विक्षेप 10 गुना एव महत्तम अपरूपण प्रतिबल 60 N/mm² से भाषिक नहीं हैं, 400N मार के अधिन महत्तम विक्षेप आधिक नहीं हैं, 400N मार्प के आधिन महत्तम विक्षेप आधिक नहीं हैं, 400N मार्प के आधिन पर के आधि से के जी

<u>र्रक</u> हाह्र

OB(સેજ્ઞેવા)

A pipe of diameter 1.2m contains a fluid at a pressure 5 V/mm². Find the thickness of the pipe, if allowable stress in the material is 120 V/mm².

एक 1.2m व्यास के पाइप में 5N/mm² दबाव का द्रव है। अगर पदार्थ का अनुमत प्रतिबल 120N/mm² हो तो पाइप की मोटाई च्रात करें।

E009TO

8

77

II. In a close coiled spring, the diameter of each coil to be 10 times that of wire of the spring and maximum shear stress is not to exceed 60 N/mm². Maximum permissible deflection under a load of 400N is 10cm. Taking the shear modulus as 9x10⁴N/mm², determine the number of coil, the diameter of the coil and energy stored in the coil.

बन्द क्वायल में क्वायल का व्यास तार के व्यास से 10 गुना एवं महत्तम अपरूपण प्रतिबल 60 N/mm² से अधिक नहीं है, 400N मार के अधिन महत्तम विक्षेप ववायल का संख्या, क्वायल का व्यास एवं संचय ऊर्जा इत्तत करें।

OB(સંગ્રવા)

A pipe of diameter 1.2m contains a fluid at a pressure $5N/mm^2$. Find the thickness of the pipe, if allowable stress in the material is $120N/mm^2$.

एक 1.2m व्यास के पाइप में 5N/mm² दबाव का द्रव है। अगर पदार्थ का अनुमत प्रतिबल 120N/mm² हो तो पाइप की मोटाई ज्ञात करें।