masterranjeet.com

Code: 100305

B.Tech 3rd Semester Exam., 2020 (New Course)

DIGITAL ELECTRONICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **MNE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following (any seven): $2 \times 7 = 14$
 - (a) Dynamic RAM employs
 - (i) capacitor or MOSFET
 - (ii) FET or JFET
 - (iii) capacitor or BJT
 - (iv) BJT or MOS
 - (b) The resolution of a 10-bit AD converter for an input range of 10 V is approximately
 - ∠*(t)* 1 V

AK-21/191

- (ii) 1 mV
- (iii) 10 mV
- (iv) 100 mV

(Turn Over)

- The evolution of PLD begins with
 - _#) EROM
 - (ii) RAM
 - (iii) PROM ∨
 - (iv) EEPROM
- The parameter through which 16 distinct values can be represented is known as
 - (i) bit
 - (ii) byte
 - √iti) word∨
 - (iv) nibble
- The number of full and half adders required to add 16-bit number is
 - (i) 8 HA, 8 FA
 - (ii) 1 HA, 15 FA ∨
 - (iii) 16 HA, 0 FA
 - (سزر) 4 HA, 12 FA
- If we record any music in any recorder, such type of process is called
 - (i) multiplexing
 - (Hi) encoding
 - (iii) decoding

AK-21/191

(iv) demultiplexing

(Continued)

(a) The no. of D flip-flop required to form a 5-bit ring counter is

Vi) 3

(ii) 4

/iii) 5 ∨

(iv) None of the above

(h) An overflow is a/an

(i) hardware problem

(iii) software problem V

(iii) user-input problem

ຸ (ໄປ) input-output problem

The systematic reduction of logic circuits is accomplished by

(i) symbolic reduction

(ii) TTL logic

(iii) Boolean algebra

(iv) truth table

A latch is an example of a/an

(i) monostable multivibrator

(ii) astable multivibrator

(iii) bistable multivibrator \square

√(iii) 555 time

2. (a) Design an excess-3 to BCD code converter using minimum number of NAND gates.

8

Prove the following:

 $3 \times 2 = 6$

 $B = A \oplus B = A \oplus B$

M A&B = A&B = A &B

3. My How can we implement preset and clear inputs in a flip-flop? Explain with the help of a diagram and list their uses.

3+3=6

8

Design a Mod 9 counter using T flip-flops.

Explain internal organization of 16×2 memory chips using suitable diagrams. Calculate the maximum rate at which data can be stored and read for a following memory having timing parameters : 4+2=6

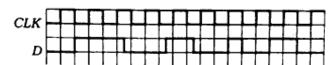
Parameter	Time (ns)
Read to Output Valid Time (t _{RD})	70
Data Setup Time (t _{DW})	120
Read to Cycle Time (t _{RC})	200
Write Release Time (twg)	0
Write Cycle (t _{WC})	200

(b) Differentiate between Word Capacity and Word Size. Design a 16×8 CAM, using 8×2 CAM chips. 2+6=8 5 (d) Define and s

Define resolution, linearity, accuracy and settling time of D/A converters. A typical D/A converter has a full-scale analog output of 10 V and accepts 6 binary bits as input. What will be the voltage corresponding to each analog step?

- (b) Design a 3-bit parallel comparator A/D converter that provides output in 2's complement format.
- 6. (a) Design a BCD to 7-segment display decoder circuit using logic gates.

(16) Design full adder using the following:


3×2=6

8

8

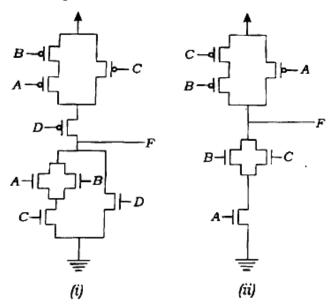
(#) 8:1 mux

7. (a) On the following graph, inputs CLK and D are shown:

They are inputs to a D latch and a positive edge triggered D flip-flop. Assuming initial output 0, draw the output waveform for flip-flop and latch. Do the two outputs differ? If so, why?

2+2+2=6

(b) Explain SIPO and SISO operations of shift register with relevant logic diagrams and truth tables.


8

6

 $4 \times 2 = 8$

8

8. (a) Identify the following logic functions implemented at F:

(b) Implement the following CMOS logics :

 $\int_{B} \overline{AB(A+B)}$ $\int_{B} \overline{AB(A+B)}$

What are weighted, non-weighted, cyclic and self-complementary codes? Explain each with examples.

AK-21/191 (Continued)

AK-21/191 (Turn Over)

Find the values of X in the following conversions: 2×3=6

(i) (95·10)₁₀ to (X)₂

(ii) (45·70)₈ to (X)₂

(iii) (168·16)₈ to (X)₁₆

* * *

Code: 100305