Code: 221201

B.Tech 2nd Semester Exam., 2018

PHYSICS

Time: 3 hours

Full Marks: 70

Instructions:

(i) The marks are indicated in the right-hand margin.

- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer any seven questions of the following:

 $2 \times 7 = 14$

- (a) Write down Gauss law.
- (b) Explain the conservative nature of electric field.
- (c) Draw the energy level diagram for a gas laser.
- (d) Find out resolving power of a grating.
- (e) Write a short note on electro-optic effect.
- (f) Briefly explain wave particle duality.
- (g) Briefly describe the Davisson-Germer experiment.
- (h) Explain briefly the concept of operators in wave mechanics.

(Turn Over)

 (i) Write down the Lorentz transformation equations in relativity.

- Briefly explain the importance of surface to volume ratio in nanotechnology.
- **2.** (a) Derive an expression for the electrostatic energy density.

(b) Derive the boundary conditions for D and H at the interface of two dielectrics; hence prove Snell's laws of electrostatics.

(c) A point charge of 5 nC is located at the origin. If V = 2 V at (0, 6, -8), find (i) the potential at A (-3, 2, 6) and (ii) the potential difference V_{AB} .

3. (a) What do you mean by displacement current? Show that the conduction current in the connecting leads of a capacitor is equal to the displacement current between its plates.

(b) Starting with Maxwell's equations, derive Poynting theorem.

(c) Calculate the skin depth δ and the wave velocity at a frequency of 1.6 MHz in aluminium for which $\sigma = 38.2$ MS/m and $\mu_r = 1$.

(Continued)

5

5

4

5

5

4.	(a)	Explain the concept of temporal and spatial coherence.	4
	(b)	What do you mean by stimulated emission? Derive the relation between Einstein's A and B coefficients.	5
	(c)	Explain the working of a solid state laser.	5
5.	(a)	What is the difference among linearly polarized, circularly polarized and unpolarized light?	3
	(b)	A glass plate is used as a polariser. Find the angle of polarization and the angle of refraction. Given μ for glass = 1.46.	3
	(c)	Derive the intensity distribution and positions of maxima and minima for diffraction through a single slit.	8
6.	(a)	What do you mean by UV catastrophe? Show that the law of Planck merges with Rayleigh-Jeans at low frequencies.	4
	(b)	X-rays of wavelength 10 pm are scattered from a target. Find (i) the wavelength of the X-rays scattered through 45°; (ii) the maximum wavelength present in the scattered X-rays; (iii) the maximum kinetic energy of the recoil electron.	6
	(c)	An electron is confined to a box of length 10^{-9} m, calculate the minimum uncertainty in its velocity. Given, mass of the electron $m = 9 \times 10^{-31}$ kg and $h = 6 \cdot 6 \times 10^{-34}$ J-s.	4
8A	K/329	9 (Turn Over	r)

7.	(a)	Set up Schrodinger's equation for a particle trapped in a box. Solve the equation and normalize the wavefunction. Discuss the physical interpretation of the obtained energy eigenvalues.	10			
	(b)	Find the probability that a particle trapped in a box L wide can be found between $0.45 L$ and $0.55 L$ for the ground and first excited states.	4			
8.	(a)	Write down the postulates of special theory of relativity.	2			
	(b)	What do you mean by time dilation and length contraction?	3			
	(c)	An electron $(m = 0.511 \text{ MeV/c}^2)$ and a photon $(m = 0)$ both have momenta of 2 MeV/c. Find the total energy of each.	4			
	(d)	Deduce the fractional increase of mass of a particle for velocity $0.1\ c.$	5			
9.	Wri	te notes on the following : 4+5+5=	14			
	(a)	Top-down and bottom-up techniques				
	(b)	Blue shift in semiconducting nano- structures				
	(c)	Applications of nanotechnology in the field of medicine and diagnostics				

· Code: 221201