Code: 031404

B.Tech 4th Semester Exam., 2018

POWER SYSTEM—I

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct option (any seven) :

 $2 \times 7 = 14$

- (a) Which of the following distribution systems is preferred for good efficiency and high economy?
 - (i) Single-phase, 2-wire system
 - (ii) 2-phase, 3-wire system
 - (iii) 3-phase, 3-wire system
 - (iv) 3-phase, 4-wire system

- (b) The main drawback(s) of overhead system over underground system is/are
 - (i) underground system is more flexible than overhead system
 - (ii) higher charging current
 - surge problem
 - (iv) high initial cost
- (c) The highest transmission voltage used in India is
 - (i) 400 kV
 - (ii) 220 kV
 - (iii) 132 kV
 - (iv) 765 kV
- (d) The function of steel wire in an ACSR conductor is to
 - (i) compensate for skin effect
 - (ii) take care of surges
 - (jii) provide additional mechanical strength
 - (iv) reduce inductance

- (e) Corona is accompanied by
 - (i) violet visible discharge in darkness
 - (ii) hissing sound
 - (iii) power loss
 - (iv) All of the above
- (f) The conductor carries more current on the surface in comparison to its core. This phenomenon is called the
 - (i) skin effect
 - (ii) corona
 - (iii) Ferranti effect
 - (iv) Lenz's effect
- (g) Ferranti effect happens in transmission line when the line is
 - (i) short and loaded
 - (ii) long and loaded
 - (iii) long and unloaded
 - (iv) None of the above

- (h) A transmission line is distortionless if
 - (i) RG = LC
 - (ii) RC = GL
 - (jii) R/C = G/L
 - (iv) R = G
- (i) The receiving-end voltage of a transmission line will be greater than the sending-end voltage if the load
 - (i) greater than SIL (surge impedance loading)
 - (ii) less than SIL
 - (iii) equal to SIL
 - (iv) None of the above
- (i) Capacitor grading of cable means
 - (i) use of dielectrics in different concentrations
 - (ii) introduction of capacitances at various lengths of cable to counter the effect of inductance
 - use of dielectric of different permittivities
 - (iv) grading according to capacitance per km length of the cable

(Continued)

2.	(a)	Explain 3-phase, 4-wire system of distribution of electrical power.	6
	(Ъ)	A 2-wire feeder ABC has a load of 100 Ampere at unity p.f. at C and 65 Ampere at p.f. 0.8 lagging at B . The impedance AB is $(0.06 + j0.08)\Omega$ and that of BC is $(0.04 + j0.12)\Omega$. If the voltage at the far end C is to be maintained at 230 V, determine the voltage (i) at A and (ii) at B .	8
3.	, (a)	Derive an expression for the capacitance of a single-phase overhead transmission line.	7
	<i>(b)</i>	Find out capacitance of a single-phase line 30 km long consisting of two parallel wires each 15 mm diameter and 1.5 m apart.	7
4.	(a)	A single-phase line has an impedance of 5∠60° Ω. It is supplying a load of 120 A, 33 kV at 0.8 p.f. lagging. Calculate its regulation.	6
	<i>(</i> b)	In a 3-phase, 4-wire system, the line voltage is 400 V and non-inductive loads of 10, 8 and 5 kW are connected between the three line conductors and the neutral. Calculate (i) the current in each line and (ii) the current in the	
		neutral conductor.	8

<i>5</i>	(a)	What are the sources of vibrations in a transmission line? Explain the methods used to damp out these vibrations.	7
	(b)	Obtain an expression for the sag of a transmission line supported by towers of different heights at the ends.	7
6.	(a)	Define regulation of a 3-phase a.c. transmission system and develop an expression for approximate voltage regulation.	8
	(b)	Explain surge impedance loading with respect to an overhead transmission line.	6
<i>Z</i> /	deliv facto each	overhead 3-phase transmission line vers 5 MW at 22 kV at 0-8 lagging power or. The resistance and reactance of a conductor are 4Ω and 6Ω respectively.	14
	(a)	Sending-end voltage	
	(b)	Percentage regulation	
	(c)	Total line losses	
	(d)	Transmission efficiency	

6

8

With the neat labelled diagram, show the various parts of a high-voltage single-core cable.	6
Explain briefly the following methods of grading of cables:	8
(i) Capacitance grading	
(ii) Intersheath grading	
A 132 kV transmission line has the following data:	
Weight of conductor = 680 kg/km	
Length of span = 260 m	
Ultimate strength = 3100 kg	
Safety factor = 2	
Calculate the height above ground at which the conductor should be supported. Ground clearance required is 10 m.	6
The three conductors of a 3-phase transmission line are arranged in a horizontal plane and are 3 m apart. The diameter of each conductor is 4 cm. Determine the inductance per km of each phase. Assume balanced load and R, Y, B phase sequence.	8
	the various parts of a high-voltage single-core cable. Explain briefly the following methods of grading of cables: (i) Capacitance grading (ii) Intersheath grading A 132 kV transmission line has the following data: Weight of conductor = 680 kg/km Length of span = 260 m Ultimate strength = 3100 kg Safety factor = 2 Calculate the height above ground at which the conductor should be supported. Ground clearance required is 10 m. The three conductors of a 3-phase transmission line are arranged in a horizontal plane and are 3 m apart. The diameter of each conductor is 4 cm. Determine the inductance per km of each phase. Assume balanced load and

* * *

Code: 031404