Code: 051403

B.Tech 4th Semester Exam., 2019

DATA STRUCTURES

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following (any seven): 2×7=14
 - (a) Which of the following best describes an array?
 - (i) A data structure that shows a hierarchical behaviour
 - (ii) Container of objects of similar types
 - (iii) Container of objects of mixed types
 - (iv) All of the above

(b) The process of removing an element from stack is called

- (i) create
- (ii) push
- (iii) evaluation
- (iv) pop
- (c) In a stack, if a user tries to remove an element from empty stack it is called
 - (i) underflow
 - (ii) empty collection
 - (iii) overflow
 - (iv) garbage collection
- (d) A linear collection of data elements where the linear node is given by means of pointer is called
 - (i) linked list
 - (ii) node list
 - (iii) primitive list
 - (iv) None of the above

- (e) What would be the asymptotic time complexity to add a node at the end of singly linked list, if the pointer is initially pointing to the head of the list?
 - (i) O (1)
 - (ii) O (n)
 - (iii) Θ (n)
 - (iv) \(\theta\) (1)
- (f) With what data structure can a priority queue be implemented?
 - (i) Array
 - (ii) List
 - (iii) Heap
 - (iv) All of the above
- (g) What is the functionality of the following piece of code?

Public void fun (int x)

q1.offer (x);

;

- (i) Perform push() with push as the costher operation
- (n) Perform push() with pop as the costlier operation

(Turn Over)

- (iii) Perform pop() with push as the costlier operation
- (iv) Perform pop() with pop as the costlier operation
- (h) In a max-heap, element with the greatest key is always in which of the following nodes?
 - (i) Leaf node
 - (ii) First node of left subtree
 - (iii) Root node
 - (iv) First node of right subtree
- (i) What is the specialty about the in-order traversal of a binary search tree?
 - (i) It traverses in a non-increasing order
 - (ii) It traverses in an increasing order
 - (iii) It traverses in a random fashion
 - (iv) None of the above
- (j) Which of the following is not an application of priority queue?
 - (i) Huffman codes
 - (ii) Interrupt handling in operating system
 - (iii) Undo operation in text editors
 - (iv) Bayesian spam filter

2.	(a)	Explain array implementation of priority queues and list implementations of priority queues.	7
	(b)	Differentiate between row major and column major array index notations. How is index calculated in both? Explain your answer by using the example of an integer array int a [10] [10] and the element a [2] [5] is to be accessed.	7
3.	(a)	What is doubly linked list? What are its applications? Explain how an element can be deleted from the list using appropriate pseudocode.	7
	(b)	Consider two strings $X = x_1, x_2,, x_n$ and $Y = y_1, y_2,, y_n$, where $x_i, 1 \le i \le n$ and $y_j, 1 \le j \le m$ are the members of finite set symbols. Write an algorithm to generate a string by taking 1 element from each list. When any one string is exhausted, the output string should store rest of the elements of other string.	7
9	(a)	What do you understand by 'garbage'? Explain how garbage collection method is used for allocating and freeing	
		memory storage.	7

(b)	Suppose the following eight numbers are inserted in order into an empty binary search tree: T: 50, 33, 44, 22, 77, 35, 60, 40 Draw the tree T.	7
5 . (a)	Discuss pre-order and post-order tree traversal techniques. Write the pseudocode for these two traversal methods.	7
(b)	Write the algorithms for insertion sort and merge sort with examples and discuss their complexities.	7
6. (a)	Write an algorithm to perform breadth first search (BFS). Compare the BFS and DFS search techniques.	7
(b)	Explain the working of merge sort on the following data: {10, 15, 0, 17, 20, 25, 30, 16, 70, 6} Show all intermediate steps. Also, mention its time complexity.	7
7. (a)	What is meant by a spanning tree of a graph? Give an algorithm to find a spanning tree. What is the complexity of your algorithm?	7
(b)	What do you mean by tree traversal? Give a recursive algorithm for tree traversal. Determine the complexity of your algorithm.	7

- 8. (a) Algorithm A requires n^2 days and algorithm B requires n^3 sec to solve a problem. Which algorithm would you prefer for a problem instance with $n = 10^6$?
 - (b) Assume the recurrence relation

$$T(N) = 2T(N/2) + N, N \ge 2$$

with boundary condition T(1) = 0. What is the time complexity?

- **9.** Write short notes on the following: $3\frac{1}{2} \times 4 = 14$
 - (a) Hashing methods
 - (b) Height balanced tree
 - (c) Operation in circular queue
 - (d) AVL tree

7

7