Code: 211404

B.Tech 4th Semester Exam., 2016

NUMERICAL METHODS AND COMPUTATIONAL TECHNIQUE

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer the following as directed (any seven):

 2×7=14
 - (a) When is a matrix said to be rectangular matrix?
 - (b) When is an iterative method said to be of order p of convergence?
 - (c) What is the convergence of Newton-Raphson method?
 - (d) Name the two types of numerical methods for the solution of simultaneous linear algebra equations.

(2)

The _____ symbol is called forward difference operator.

(Fill in the blank)

- The differences of the first-order forward differences are called _____. $\Delta(\Delta V) = \Delta^2 V$ (Fill in the blank)
- (g) What is the geometric significance of the trapezoidal rule?
- (h) What is quadrature?
- statement are used to repeat execution of a list of statements.

(Fill in the blank)

(i) The 20 10 statement is used to transfer control to a specified label.

(Fill in the blank)

- 2. (a) Find the root of the equation x tan x = 1.28 that lies between 0 and 1, correct to two places of decimals, using bisection method.
 - (b) Write a computer program using C++
 for the above equation using bisection
 method.
 7-7=14

3. Find the inverse of the matrix

$$A = \begin{vmatrix} 1 & 3 & 3 & 2 \\ 1 & 4 & 3 & 4 \\ 1 & 3 & 4 & 5 \\ 2 & 5 & 3 & 2 \end{vmatrix}$$

by Gauss elimination method.

14

4. The population of a town in the census is as given in the following data:

given in the lone	given in the following					
Year (x)	1961	1971	1981	1991	2001	
Population (in 1000's)	46	66	81	93	101	
1 Optament (

Estimate the population in the year 1996 using Newton's (a) forward interpolation and (b) backward interpolation formulas. 7+7=14

5. Fit a curve of the form $xy = a + bx^2$ of the following data by the method of least squares: 14

DWILIS GARGE OF THE STATE OF TH							
I	Y	1	2	4	6	8	
	v	5.43	6.28	10.32	14.86	19.51	

6. The velocity v a particle at distance s from a point on its linear path is given in the following data:

fol	lowin	ig da	ta:						
s(m)	0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
υ(m/s)	16	19	21	22	20	17_	13	11	9

Estimate the time taken by the particle to traverse the distance of 20 metres, using Simpson's one-third rule.

7. Solve the equation $5x\frac{dy}{dx}+y^2-2=0$; y(4)=1 for $y(4\cdot 1)$ and $y(4\cdot 2)$ taking $h=0\cdot 1$, using simple Euler's method and modified Euler's method.

8. Solve the equation $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1 for $y(0\cdot 1)$ and $y(0\cdot 2)$, using Runge-Kutta method of the fourth order.

14

9. Solve the equation y''(x) - xy(x) = 0 for $y(x_i)$, $x_i = 0, 1/3, 2/3$, given that y(0) + y'(0) = 1 and y(1) = 1 by using boundary value problem.

14