masterranjeet.com Code: 051506

B.Tech 5th Semester Exam., 2018

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 hours Full Marks: 70

Instructions:

(i) All questions carry equal marks.

- (ii) There are MNE questions in this paper.
- (iii) Attempt any FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer (any seven):
 - (a) Which algorithm is better for sorting between bubble sort and quicksort?
 - (i) Bubble sort
 - (ii) Quicksort
 - (iii) Both are equally good
 - (iv) These cannot be compared
 - (b) An algorithm which uses the past results and uses them to find the new results is
 - (i) brute force
 - (ii) divide and conquer
 - (iii) dynamic programming algorithm
 - (iv) None of the mentioned

(2)

- (c) Out of the following which property of algorithm does not share?
 - (i) Input
 - (ii) Finiteness
 - (iii) Generality
 - (iv) Constancy
- (d) Which of the following standard algorithms is not a greedy algorithm?
 - (i) Dijkstra's shortest path algorithm
 - (ii) Kruskal algorithm
 - (iii) Bellmen Ford shortest path algorithm
 - (iv) Prim's algorithm
- (e) What is the time complexity of Huffman coding?
 - (i) O(N)
 - (ii) $O(N \log N)$
 - (iii) $O(N(\log N)^2)$
 - (iv) $O(N^2)$
- (f) ____ comparisons are required to sort the list 1, 2, 3, ... n using insertion sort.
 - (i) $(n^2+n+2)/2$
 - (ii) $(n^3+n-2)/2$
 - (iii) $(n^2+n-2)/2$
 - (iv) $(n^2-n-2)/2$

AK9/155

(Continued)

AK9/155 (Turn Over)

- (g) Which of the following is true about Huffman coding?
 - (i) Huffman coding may become lossy in some cases
 - (ii) Huffman codes may not be optimal lossless codes in some cases
 - (iii) In Huffman coding, no code is prefix of any other code
 - (iv) All of the above
- (h) A complexity of algorithm depends upon
 - (i) time only
 - (ii) space only
 - (iii) both time and space
 - (iv) None of the mentioned
- (i) A text is made up of the characters a, b, c, d, e each occurring with the probability 0.11, 0.40, 0.16, 0.09 and 0.24 respectively. The optimal Huffman coding technique will have the average length of
 - (i) 2.40
 - (ii) 2.16
 - (iii) 2.26
 - (iv) 2.15

- (j) Build heap is used in heap sort as a first step for sorting. What is the time complexity of build heap operation?
 - (i) $O(n \log n)$
 - (ii) O(n^2)
 - (iii) O(log n)
 - (iv) O(n)
- 2. Solve the following recurrence by successive substitution method:

$$\begin{cases} f(1) &= 1 &, & \text{if } n = 1 \\ f(n) &= 3f(n/2) + 6, & \text{if } n > 1 \end{cases}$$

- 3. COUNTING SORT algorithm assumes that each of the n input elements is an integer in the range 0 to k, for some integer k. When k = O(n), the sort runs in $\Theta(n)$ time. Change COUNTING SORT algorithm for the numbers lying in the range p to q where (q-p) is still O(n). Also analyze the new complexity.
- Consider a directed acyclic graph with non-negative edge costs and with a given start vertex s.
 - (a) Write an algorithm to compute distances from source s in O(E+V) time. Justify why your algorithm is correct.
 - (b) Explain, with an example, why Dijkstra's algorithm might take $\Omega(V \log V)$ time.

- 5. Consider the two standard representations of directed graphs: the adjacency-list representation and the adjacency-matrix representation. Find a problem that can be solved more efficiently in the adjacency-list representation than in the adjacency-matrix representation, and another problem that can be solved more efficiently in the adjacency-matrix representation than in the adjacency-list representation.
- 6. Differentiate between the following:
 - (a) Fractional Knapsack vs. 0/1 Knapsack
 - (b) Kruskal's vs. Prim's Algorithm
- 7 What are NP-complete problems? Write some problems which are P, NP and NP-hard. Explain any NP-hard problem in detail.
- 8. Explain quicksort and its asymptotic complexities.

 Take some distinct numbers and perform quicksort over it.
- 9 Explain travelling salesman problem; using—
 - (a) Greedy method;
 - (b) Dynamic programming method.

* * *

Code: 051506