NT6020

2019(Odd) 1620603

Time : 3Hrs.

Sem - VI/E&EE/E Pow. Elect. & Drives

Full Marks : 70

Pass Marks : 28

Answer all 20 questions from Group A, each question carries 1 marks.

ग्रुप-A से सभी 20 प्रश्नों के उत्तर दें, प्रत्येक प्रश्न का मान 1 अक है।

Answer all **Five** questions from **Group B**, each question carries **4** marks.

ग्रुप–B से सभी पाँच प्रश्नों के उत्तर दें, प्रत्येक प्रश्न का मान 4 अक है।

Answer all **Five** questions from **Group** C, each question carries 6 marks.

ग्रुप–C से सभी पाँच प्रश्नों के उत्तर दें, प्रत्येक प्रश्न का मान 6 अंक है।

All parts of a question must be answered at one place in sequence, otherwise they may not be evaluated.

एक प्रश्न के सभी अंशों का उत्तर एक ही जगह (लगातार क्रम में) होना चाहिए, अन्यथा वे जाँचे नहीं जा सकते हैं।

The figure in right hand margin indicate marks. दाएँ पार्श्व के अंक पूर्णांक के सूचक हैं।

P.T.O

	(a) Silicon)
	(i) A Thyristor can	r can be fabricated u	: Buisn	n ditw retter with n the waveforms	neat circuit diagram and al. s.	also draw
	றை ந ூர <i>ு </i> கு கிற்ற	yकम् ह कि फ़क्की	: किंली र	11. Explain the operation of a single phase half bridge		
	: suoitqo		1×50=20			
1.	Choose the most suita	nort rewene elderiue	gniwollof off me	ا کا هطالغ الله المعالم		
	e	€BOUP-A		क ङ}र्फ्राल (ब्र)	न्म्यूटेशन का वयोग इन्हे	र्फ्रक मि प्रรेव
791	E090	7	NT6020	07091N	61	105002

। हॉछि कि एक एरेंग केमुड़ एफ़ी रेक एराइ छर्राफ़ एक एकल कला अधंबीज इन्वटेर का वर्णन स्वच्छ 9

E09079I

(ાંગ્લા) (ગ્રંગ ના

(b) Cycloconverter. (a) UPS (Uninterrupted power supply) Write short notes on the following :-

(ब) साइक्लो कन्वर्टर (अ) यू० मी० एस० । छिर्छा गिण्ण्य में एक्षेम में एक्ष्म के तर्छार्हान्नमें

2 (B) A TRIAC has layers? (11)

(द) कोई अधंचालक पदार्थ

एक आइरिस्टर को किससे बनाया जा सकता

(d) Any semiconductor material

(c) Gallium Arsenide

(b) Germenium

(स) गैलीयम आर्सेनाइड

(ब) जमैनियम

(अ) मिलिकन

ξĝ

(i)

- £ (q)
- ₽ ())
- ς (p)

 (ii) एक ट्रायक के पास परत होता है।
 (3) 2
 (ब) 3
 (स) 4

3

- (iii) A TRIAC can be turned on by :
 (a) Applying a positive signal to gate
 (b) Applying a negative signal to gate
 (c) Applying either positive or negative signal to gate
 - (d) None of the above

(द) 5

- (iii) एक ट्रायक को चालू किया जाता है।
 - (अ) गेट पर धनात्मक सिग्नल को लागू करके
 - (ब) गेट पर ऋणात्मक सिग्नल को लागू करके
 - (स) धनात्मक या ऋणात्मक कोई भी सिंग्नल गेट पर लागू करके
 - (द) उपरोक्त में से कोई भी नहीं
- (iv) When SCR is in the forward blocking state : (a) All the 3 junctions are reversed
 - (b) The anode and cathode junction are forward baised while the gate is reverse baised
 - (c) The anode junction is forward biased but cathode-gate junction are reverse biased
 - (d) The anode-gate junction are forward baised but the cathode junction is reverse biased.

OR(अथवा)

18

A step up chopper has input voltage of 100V and an output voltage of 300V. The period of blocking in each cycle is 0.8×10^{-3} second. Find the period of conduction.

एक स्टेप अप चौपर के आगम विभव 100V है तथा निर्गम विभव 300V है। बन्द समयान्तराल प्रत्येक चक्र का 0.8 × 10⁻³ second है तो चालन समयान्तराल ज्ञात करें।

10. Draw and explain the circuit of single phase full converter motor drive.

6

एकल कला पूर्ण कन्वर्टर मोटर ड्राइव परिपथ का सचित्र वर्णन करें।

OR(अथवा)

(a) What is inverter ? Discuss its some of applications.

- (b) How forced commutation is used in inverters
- (अ) इन्वर्टर क्या है ? इसके कुछ उपयोगों की विवेचना करे?

<u>4</u>4 F(1) = F(1) + F(1) +डायाड गलीक कि कम में दायाड गला होता हो कि कम की खायाड एक एकल कला अर्थ तरंग रेक्टिफायर जो R-L

11

OB(સેજ્ઞેવા)

 π show that the output voltage is $V_{dc} = \frac{V_m}{2\pi} (1 + \cos \alpha)$ half cycle. The firing angle α may vary from 0 to , a thyristor. The thyristor conducts during positive A voltage $V = V_m sinwt$ feeds a resistance through

 $V_{dc} = \frac{V_{dc}}{2\lambda} (1 + \cos \alpha)$ होता है। नाम कि वर्मनी मर्गनी कमुड्र गुष्ठिती ति \mathfrak{R} ायरिंग कोण α का मान $\mathbf{0}$ से π तब बदलता है, 15 गिरि नजान नार्ग्र के कार्यंत्र कार्नान कार्व्य के कार्यंत्र के कार्य कार्यंत्र के कार्यं कार्यंत्र के कार्य कार्यंत्र के कार्य कार्यंत्र के कार्यं कार्यंत्र के कार्यं क कार्यंत्र के कार्यं के कार कार्यंत्र के कार्यंत्र कार्यं के कार्यंत्र कार्यंत्र कार्यं कार्यंत्र कार क $V = V_{m sinwt}$ आर्राषेत किया जाता है। थाइरिस्टर **р**र्म्म् के 1913 अंग्रिंग् में श्रह्म्र्याड़ाक कप्

Explain the operation of a step down chopper with

necessary waveforms.

'6

9

िर्क शिम के एक एरेत

- 15 र्के थोड-गेट जंक्शन उल्टा वायसढ् होते (स) एस) ह प्रति ह रहे होने है पर ई तिंह रूम् एक रज्य उम् भूम ई (ब) एनोड एव केथोड् जक्शन अग्रवर्ती होते ई 6वि रुभ्या रेज्य नायस्य सिम्र (छ) **16、5 161**3 (ΛI) 0709**L**N t 1020603
- (b) $2-\phi & 3-\phi$ converters (a) $2-\phi \propto 1-\phi$ converters of the following categories. Phase controlled converters can be in one (A) 1 § 1615 है तथा कैथोर जक्शन उल्टा वायसद् (द) एनोड-गेट जंक्शन अग्रवर्ती वायसड् होते
- (c) $1-\phi$ & $3-\phi$ converters
- फि कर हिन्दी कि र5नन्क तर्हा एन किक (A)
- (अ) 2-∲ तथा 1-¢ कन्दर िई 1तिकम का छिर मि

(d) Only $1-\phi$ converters

- (d) $2-\phi$ (fall $3-\phi$ ϕ -acc 4
- (स) १-७ तथा ३-७ कन्टर
- (द) केवल 1-∲ कन्वटेर

162060	3 16	NT6020	NT6020	5 1620603
GROUP - C Answer all Five Questions. सभी पाँच प्रश्नों के उत्तर दें। 6 x 5 = 30				In a circuit , the freewheeling diode prevents load voltage from going : (a) Positive (b) Negative
Ň	a) When is a gate signal applied why?b) Which one method of thyrister			(c) Either positive or negative(d) None of the above
-	most commonly used and wh अ) गेट् सिग्नल एक थाइरिस्टर क्यों लगाया जाता है? ब) थाइरिस्टर चालू करने के लि सा उपाय प्रयोग में लाया ज	6 में कब और ए सर्वाधिक कौन		एक परिपथ में फ्री व्हिलिंग डायोड, लोड विभव को जाने से रोक लगाता है। (अ) धनात्मक (ब) ऋणात्मक (स) या धनात्मक नहीं तो ऋणात्मक (द) उपरोक्त में से कोई नहीं
E	OR(अथवा) xplain the modes of operation of	of a TRIAC.		 A power MOSFET has three terminals called: (a) Collector, emitter and base (b) Drain, source and base (c) Drain , source and gate (d) Collector, emitter and gate
X	ायक के कार्य मोडों का वर्णन		()	एक शक्ति मौसफेट के तीनों टर्मिनल कहलाते है? (अ) कलेक्टर, इमिटर तथा बेस
re	a single -phase half wave rectific equires a freewheeling diode. W he help of diagrams.	e		(ख) ड्रेन, सोर्स तथा बेस (स) ड्रेन, सोर्स तथा गेट (द) कलेक्टर, इमिटर तथा गेट P.T.O

0709TN	9 NL6020	E090791
) ほ	SCR will be turned OFF when anode current is	(iiiv)
<u>ከ</u> ይ	(a) Less than holding current	
	(b) Less than the latching current & greater	
ε Υ . 9	than the holding current and gate signal	
ſцı	IS ZETO	
Гiт	(c) Less than the latching current & greater	
	than the holding current & the gate	
t îi	signal is present	
; si	(d) \mathfrak{B} oth (a) \mathfrak{K} (b)	
ቅ፶	प्रस सी आर को बन्द फ़िया जापा ई जब	(іііл)
म्भ	प्रनोख धासा?	
`		

र्वादा तथा गेट भिग्नल उपस्थित होते ्यादा तथा गेट सिग्न्स शून्य होते है। मि एग में कि सि के मि के मि के मि के कि (b) मि के कि के क ह गिवि मक मि छि एछ गिव (सि)

(d) A regulator $(c) \land Cy Chopper$ (b) Inverter (a) A Rectifier rectifier begins to work as a: If the firing angle becomes negative, then the (XI)

(द) (अ) तथा (ब) दोनों

15

। गृत्तक कि तिर्माष्ट्रम क रुउरुरीड्राए में एहएनी तीए के रुउमि obot

SI

1 $suure 0\zeta$ the firing angle, α is 30° and the load resistance and the average load voltage and r.m.s load voltage yristor is fed by a supply voltage of 400 sinwt. single phase half wave rectifier circuit using

का मान निकाले, यदि फायरिंग कोण α , 30° है, भोस विभव तथा आर०एम०एस० विभव ا ई twniz 004 वर्म्सवी सींग्रार कि प्रिप्रीय रीकज्य क आइरिस्टर द्वारा चालित एकल कला अध तरंग

OB(अन्नवा)

(b) Load commutation (a) Class-B DC chopper Write short notes on :

1ई Q02 अंग्रिंग र्हाल तथा

(ब) लोड् कम्पूरेशन (अ) वर्ग-बी डी०सी० मिंग्र । छिली लिएटी स्रिकि

O.T.q

£090791

162	0603	14	NT6020	NT6020	7 162060
	कोई एक विधि द्वारा थाइरिस्टर ट्रिगर का वर्णन सचित्र करें।			(ix)	यदि फायरिंग कोण ऋणात्मक होता है तो कोई भी दिष्टकारी कार्य करता हैः (अ) दिष्टकारी जैसा
4.	Explain the compleme of thyristor.	entary commutation	n method 4		(ब) इन्वर्टर जैसा (स) एक चौपर जैसा (द) एक रैगुलेटर जैसा
	थाइरिस्टरों में पूरक व	न्म्यूटेशन विधि का	वर्णन करें।	(x)	A chopper is a :- (a) Time ratio controller
	0	R(अथवा)			(b) AC to DC converter(c) DC Transformer
	Explain the protection snubber circuit.	of thyristor with the	ne help of	(x)	(d) High speed semiconductor switch एक चौपर होता है:
	थाइरिस्टर बचाव के ति करें।	लेए स्नबर परिपथ	का वर्णन		(अ) समय–अनुपात नियंत्रक (ब) ए०सी० से डी०सी० में बदलने वाला (स) डी०सी० ट्रांसफरमर (द) उच्च गति का अर्ध चालक स्वीच
5.	Explain the principle of	of operation of DC	chopper.		
	डी०सी० चौपर के कार	र्य सिद्धान्त का वर्ण	4 न करें।	(xi)	A single phase half controlled rectifier is operated from 220 V, 50 Hz supply. If the firing angle is 30° and the load in resistive

OR(अथवा)

Explain the use of thyristor in speed control of DC motor.

1620603

with R = 20 ohm, then the average voltage to:

(a) 100 V (b) 92.4 V

(c) 65 V (d) 120 V

ng the thyristor	ic method of triggeri. h.	Discuss any or With neat skete		ZH 0005 (ZH 0001 (ZH 005 (o) q)
	0४(સ્રજ્ઞવા)			a chopper fed D.C. drive. quency is approximately) 50 Hz	ort
t	uiləədw əərî fo noitər विकिपिक किविकि			रग जाल एस ह.) एक मुरेक्स्टर) इच्ह्र्क्टर तथा कीपासित हेन्ह्र्क्ट्र तथा कीपासित हेपासिटर	£) म) म)
ीलनात्मक	ह हा क भ्रुम्भणांड्र	घर भउन्र्रीह्राष्ट विवरण दें ।	<u> </u>) A capacitor ہ लोख कम्यूटेशन परिपथ सने वाले तत्व है:	ъу ^(iix)
with explanation.	rstors and thyristors	Compare trans) An Inductor) A Variable resister) Inductor and a capacitor	o) q)
	(સચવા)		ait, the	a load commutation circu mmutating element is :	
7	•		्रीए ,ई तथा प्रतिरोध कु तथा प्रतिरोध	हारा के घ्रदाय के द्वारा होक फीकञ्डी कहानी, हो 65 V 1) 120 V 100 V 2.4	形 支 行 (3 (3 (3 (3 (5) (7) (7) (7) (7) (7) (7) (7) (7
E09079I	EI	NL6020	NT6020	8	£090791

O.T.q

NT6020

(xix) एक एकल कला पूर्ण नियंत्रित ब्रीज कन्वर्टर RLE लोड दिया जाता है। आगम् विभव का मान V_msinwt तथा फायरिंग कोण α है, यदि औसत धारा Ι₀ है तो

12

(31)
$$\frac{2V_m}{\pi} \cos \alpha = RI_0 + E$$

(a)
$$\frac{V_m}{\pi}$$
 $\cos \alpha = RE_0 + E$
(c) $\frac{2V_m}{\pi}$ $\cos \alpha = E_0 - RI_0$
(c) $\frac{V_m}{\pi}$ $\cos \alpha = E - RI_0$

- (xx) The process of bringing a thyristor to OFF state by another thyristor is called :-
 - (a) Forced commutation
 - (b) Natural commutation
 - (c) Line commutation
 - (d) All of the above $\left(d \right)$
- (xx) एक थाइरिस्टर द्वारा दूसरे थाइरिस्टर को बन्द करने की प्रक्रिया को :(अ) फोर्सड कम्यूटेशन कहते है
 (ब) प्राकृतिक कम्यूटेशन कहते है
 (स) रैखिय कम्यूटेशन कहते है
 (द) उपरोक्त सभी

 (xiii) एक चौपर चालित डी०सी० ड्राइव में, चौपिंग आवृत्ति लगभग है:- (अ) 50 Hz

9

- (ब) 300 Hz
- (4) 500 112
- **(स)** 1000 Hz
- **(द)** 5000 Hz
- (xiv) In a thyristor the ratio of latching current to holding current is
 - (a) 0.4
 - (b) 1
 - (c) 2.5
 - (d) 6
- (xiv) एक थाइरिस्टर में लैचिंग धारा और होल्डिंग धारा का अनुपात हैः
 - (अ) 0.4
 - (ब) 1
 - (स) 2.5
 - (द) 6
- (xv) UPS is never used in :-
 - (a) Street lighting
 - (b) Computers
 - (c) Communication link
 - (d) Instrumentation

the above (d) $\frac{\pi}{2\sqrt{m}}$ Cos $\alpha = E - BI_0$	t to anoV (b)
	(c) Resistive
(c) $\frac{\mu}{\sqrt{m}}$ Cos α = E ^o - BI ^o	vitiosqaD (d)
$ \sum_{\Lambda} u_{\Lambda} (3) $	evitoubnl (a)
The diode is useful when the load is: (b) $\frac{\sqrt{m}}{\pi}$ Cos $\alpha = RE_0 + E$	(ivii) Free wheelin
4 全切っ井 (α) 立 (α)	०फ्रि०ि (२)
	оििक (म)
وظاره با العرادية المراجع	<u>नान</u> गंग
ित वाले ए०सी से दूसरे आवृत्ति converter is feeding RLE load. Input voltage is V _m sinwt and firing angle is α.	चार कग (ब)
等的 在 Share A (xix) 在 Share A (xix) 在 Share A (xix)	^л оff у оу (к)
	1 <u>\$</u>
جر एक उपकरण है, जो बदलता (स) (स) या (ब) (स) (अ) या (ब)	•
न्त्र्यूटेशन होते (ब)	(d) DC to DC
	$OA \text{ of } OD (\mathfrak{d})$
	Couenbert
is frequency to AC of another	ono to DA (d)
AVOR ANT TO ANON (D)	Od of OA (a)
ter is a device which converts (b) Forced commutation	
(a) Line commutation	
हान में The commutation method, in an inverter is	<u> </u>
म किंति नहत	र्क्ताप्रम् (म)
म न र २२ २	(ه) بدي (ه)
மில்கள் (க)	ि र्जिङ्ग (स)
स न्हा क्रियों क	। ई 15कम
میں حصصح (xvii) یہ حصصح (xvii) ہوا طاع ہو کہ اور میں کہ مع مار کا معرف کا کہ مع مار کا کہ مع مار کا کہ مع	•
10 NT6020 NT6020 II 1620603	1620603