Code: 211405

B.Tech. 4th Semester Exam., 2014

DISCRETE MATHEMATICAL STRUCTURE AND GRAPH THEORY

Time: 3 hours Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct alternative from the following (any seven): 2×7=14
 - (a) Consider a simple connected graph G with n vertices and n edges (n > 2). Then which of the following statements is True?
 - (i) G has at least one cycle
 - (ii) G has no cycles
 - (iii) The graph obtained by removing any edge from G is not connected
 - (iv) G has at least one cycle and the graph obtained by removing any edge from G is not connected

- (b) The number of distinct simple graphs with up to three nodes is
 - (i) 9
 - (ii) 7
 - (iii) 10
 - (iv) 15
- (c) Consider the graph G, where
 V(G) = {A, B, C, D} and E(G) = [{A, B}, {B, C}, {C, D}]. The degree of each of the vertices A, B, C and D respectively in G are
 - (i) 1, 2, 3, 2
 - (ii) 1, 3, 2, 2
 - (iii) 1, 1, 1, 1
 - (iv) 1, 2, 2, 1
- (d) Let f and g be the functions defined by f(x) = 2x + 3 and g(x) = 3x + 2, then the composition of f and g is
 - (i) 6x+6
 - (ii) 5x+5
 - (iii) 6x+7
 - (iv) 7x+5

- (e) Among 200 people, 150 either swim or jog, or both. If 85 swim, and 60 swim and jog, how many jog?
 - (i) 125 s
 - (ii) 225
 - (iii) 85
 - (iv) 25
- A graph in which all nodes are of equal degree is known as ---- graph.
 - (i) complete
 - (ii) multi
 - (iii) non-regular
 - (iv) regular
- The minimum number of spanning trees in a connected graph with n nodes is
 - (i) n-1
 - (ii) n/2
 - (iii) 2
 - (iv) 1
- The negation of Today is Friday' is
 - Today is Saturday
 - (ii) Today is not Friday
 - (iii) Today is Thursday
 - (iv) Today is Sunday

- Whether the relation R on the set of all reflexive, symmetric, integers is anti-symmetric or transitive, where $(x, y) \in R$ if and only if $xy \ge 1$?
 - Anti-symmetric
 - (ii) Transitive
 - (iii) Symmetric
 - (iv) Both symmetric and transitive
- If p = 1 is raining and q = 1 She will go to college', then 'It is raining and she will not go to college' will be denoted by
 - $_{\bullet}(i) p \land \neg q$
 - (ii) $p \wedge q$
 - (iii) $\neg p \land q$
 - (iv) $\neg (p \land q)$
- Define the following terms and give an example for each:

Reflexive, Irreflexive, Anti-symmetric, Transitive, Partition set

(b) If $A = A_1 \cup A_2 \cup A_3$, where $A_1 = \{1, 2\}$, $A_2 = \{2, 3, 4\}$ and $A_3 = \{5\}$, define relation R on A by xRy, if x and y are in the same subset A_i , for $1 \le i \le 3$. Is R an equivalence relation? 10+4=14

(Continued)

· (Turn Over)

- 3. (a) Let $f, g: z^+ \to z^+$, where $\forall x \in z^+$, f(x) = x + 1 and $g(x) = \max \{1, x 1\}$, the maximum of 1 and x 1.
 - (i) What is the range of f?
 - (ii) Is f an onto function?
 - (iii) Is the function one-to-one?
 - (iv) What is the range of g?
 - (b) Let $A = \{1 \ 2 \ 3 \ 4\}$. Let R be a relation on A defined by xRy iff x/y and y = 2x.
 - (i) Whether R is a relation of set of ordered pairs?
 - (ii) Draw digraph of R.
 - (iii) Determine in-degrees and outdegrees of a digraph. 8+6=14
- 4. (a) Define the following with example : Group, Subgroup, Homomorphism, Cyclic group, Coset
 - (b) Determine whether f is one-one or onto for the following cases:
 - (i) Let $A = B = \{1 \ 2 \ 3 \ 4\}$ and $f = \{(1 \ 1)(2 \ 3)(3 \ 4)(4 \ 2)\}$
 - (ii) Let $A = \{abc\}$, $B = \{1 \ 2 \ 3 \ 4\}$ and $f = \{(a \ 1)(b \ 1)(c \ 4)\}$ 10+4=14

- 5. (a) State and prove De Morgan's laws of set theory, akubihar.com
 - (b) In a survey of 260 college students, the following data were obtained:
 - 64 had taken a mathematics course
 - 94 had taken a computer science course
 - 58 had taken a business course
 - 28 had taken both a mathematics and a business course
 - 26 had taken both a mathematics and a computer science course
 - 22 had taken both a computer science and a business course
 - 14 had taken all the three types of course. akubihar.com
 - (i) How many of these students had taken none of the three courses?
 - (ii) How many had taken only a computer science course? 4+10=14
- **6.** (a) Prove that for any non-empty binary tree T, if n_0 is the number of leaves and n_2 be the number of nodes having degree two, then $n_0 = n_2 + 1$.
 - (b) Derive total number of nodes of a binary tree having depth n.

14AK-800/646

(Turn Over)

Duer 1 14AK-800/646

(Continued)

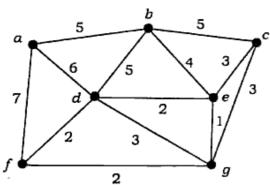
14

- (a) Define 'group', 'order of a group', and 'Abelian group'.
 - (b) For $P = \{p_1, p_2, ..., p_5\}$ and $Q = \{q_1, q_2, ..., q_5\}$, explain why (P, *) and $\langle Q, \Delta \rangle$ are not groups. The operations * and Δ are given in the following table:

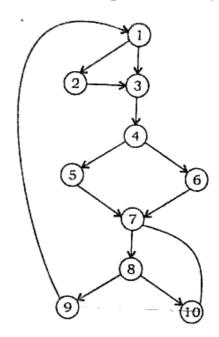
*	p_1	p_2	p_3	p ₄	<i>p</i> ₅	Δ	q_1	q_2	q_3	q_4	95
p_1	p_1	p_2	p_3	p ₄	p_5	q_1	q_4	q_1	q_5	q_3	q_2
p_2	p_2	p_1	p ₄	p_5	p_3	q_2	93	q_5	q_2	q_1	q_4
p_3	p_3	<i>p</i> ₅	p_{l}	p_2	p_4	q_3	q_1	q_2	q_3	q_4	95
<i>p</i> ₄	p_4	p_3	p_5	p_{l}	p_2	q_4	q_2	q_4	q_1	q_5	q_3
p_5	p_5	<i>p</i> ₄	p_2	p_3	p ₄	q_5	q_5	q_3	q_4	q_2	q_1

6+8=14

8. Explain Dijkstra's algorithm and apply it to the weighted graph G = (V, E) shown in Figure below and determine the shortest distance from vertex a to each of the other vertices in the graph. 6+8=14



9. Consider the graph given below:



- (a) Find the adjacency list and BFS traversal of the above graph.
- (b) Prove that the maximum number of edges possible in a simple graph of n nodes is n(n-1)/2.
 8+6=14

* * *