Code: PCC-EEE-03 (100307)

B.Tech 3rd Semester Special Exam., 2020

ELECTRICAL MACHINES-I

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- Answer any seven of the following questions:

2×7=14

- (a) State Biot-Savart law.
- State Ampere law. • (b)
- (c) Draw magnetic lines of a magnate showing magnetic flux lines clearly.
- (d) On the same platform, draw the B-H curve for soft as well as hard magnetic material.
- (e) With the help of neat and labeled diagram, show energy and co-energy.

(Turn Over 1

20AK/1294

- What interpoles are used for in a DC motor?
- Define commutation in DC machine.
- Draw sample waveform of wave winding and lap winding.
- Why is laminated core used in transformers?
 - What is the order of the efficiency of a general purpose transformer? State reason.
- 2. (a) Draw and discuss general representation of an electromechanical energy conversion device. Further, explain lossless electromechanical energy conversion.
 - The self and mutual inductances of a doubly excited magnetic system are as follows:

 $L_s = 0.65 + 0.18 \cos 2\theta$, henry $L_r = 0.78 + 0.29 \cos 2\theta$, henry $M_{\bullet} = 0.86 \cos \theta$, henry

· Considering the winding resistance as zero, find the magnitude and direction of torque when the currents are $i_* = 15 \text{ A}$ DC, and $i_r = 12 \text{ A}$ DC. When stationary rotor has an angular position of $\theta_r = 60^\circ$, consider all notations in their standard representation.

6

3. (a) Derive the expression for the maximum efficiency of a single-phase transformer.

. 6

(b) Draw and explain the exact and approximate equivalent diagram of a single-phase transformer. Give the mathematical formulations to represent the impedances, voltage and current of a side, when referred to another side.

Ω

4. (a) Following test results are obtained from a 10 kVA, 2500/250, 1-\$ transformer. Calculate the efficiency at the load at 0.8 p.f.:

6

OC test: 250 V, 0.8 A, 50 W SC test: 60 V, 3.0 A, 45 W

Why are OC/SC tests performed on a transformer? Discuss what side they are performed and why. Elaborate the procedure to perform the tests.

8

Draw and discuss the important constructional details of a DC motor.

List two applications of DC series motor depicting its characteristic.

6

(b) Differentiate lap and wave windings along with their roles in a DC motor. Given the number of conductors in the machine as 16, calculate the average pitch of a 4-pole DC machine for (i) lap and (ii) wave windings.

8

20AK/1294

(Turn Over)

6. (a) What do you understand by armature reaction? Elaborate its effect on the working of a DC generator and suggest the remedies to remove it.

7

(b) What are the problems faced with regard to commutation in a DC machine? Suggest the constructional changes need to be performed in order to protect the machine from commutation failure.

7

7. (a) A 4-pole, 32-conductor, DC generator is lap wound and is running at a speed of 1500 r.p.m. Assuming per pole to be 10 Wb, find the EMF generated by the DC machine.

ĸ

Draw the open circuit and load characteristics of a separately excited DC generator. Also explain the curvature that is seen in an open circuit characteristic of a self-excited DC generator.

8

8. (a) Classify various types of braking used in a DC machine. Explain the type of braking demonstrating a train runs down a hill top. Support your answer with mathematical expressions.

/ Continued

(b) "A DC shunt motor can provide a wide range of speed control." Justify the statement theoretically and mathematically. Additionally, draw neat and labeled diagram of Ward Leonard method to control the speed of a DC shunt motor.

7

9. (a) Differentiate between a 1-\$\phi\$ transformer and an autotransformer. How is copper saving done in an autotransformer?

What are additive and subtractive polarities in an autotransformer?

7

(b) Why is back-to-back test performed on a transformer? Write the steps to conduct the test. In back-to-back test, the wattmeter readings for primary and secondary are 25 W and 50 W, respectively. Calculate the copper loss of a transformer at half the rated load, if both the transformers used are identical.

7

* * *

Code: PCC-EEE-03 (100307)