masterranjeet.com

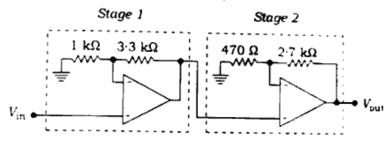
B.Tech 3rd Semester Exam., 2019 (New Course)

ANALOG ELECTRONIC CIRCUITS

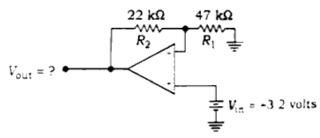
Time: 3 hours

Full Marks: 70

Instructions:


- (i) The marks are indicated in the right-hand margin.
- (ii) There are **MINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- (v) Symbols and notations carry their usual meanings.
- Choose the correct answer of the following (any seven): 2×7=14
 - (a) For a base current of 10 μ A, what is the value of collector current in common emitter if β_{dc} = 100?
 - (i) 10 µA
 - (ii) 100 μA
 - (iii) 1 mA
 - (iv) 10 mA

- (b) Which of the following oscillators is suitable for frequencies in the range of MHz?
 - (i) RC phase shift
 - ந்த்) Wien bridge
 - (iii) Hartley
 - (iv) Both (i) and (iii)
- (c) If an amplifier with gain of -1000 and feedback factor β = -0·1 had a gain change of 20% due to temperature, the change in gain of the feedback amplifier would be
 - (i) 10%
 - (ii) 5%
 - (iii) 0.2%
 - (iv) 0.01%
- (d) In a CE amplifier, the input impedance is equal to the ratio of
 - (i) a.c. base voltage to a.c. base current
 - (ti) a.c. base voltage to a.c. emitter current
 - (iii) a.c. emitter voltage to a.c. collector current
 - (iv) a.c. collector voltage to a.c. collector current


- (e) For a system to work, as oscillator the total phase shift of the loop gain must be equal to
 - (i) 90°
 - (ii) 45°
 - (iii) 270°
 - (iv) 360°
- (f) A CB amplifier has $r_e = 6\Omega$, $R_L = 600\Omega$ and a = 0.98. The voltage gain is
 - (i) 100
 - (ii) 600×0-98
 - (iii) 98
 - (iv) 6
- (g) The open-loop gain of an amplifier is 200. If negative feedback with $\beta = 0.2$ is used, the closed-loop gain will be
 - (i) 200
 - (ii) 40·12
 - (iii) 4·878
 - (iv) 2·2
- (h) An RC oscillator uses
 - (i) one RC combination
 - (ii) two RC combinations
 - (iii) at least three combinations
 - (iv) Either (i) or (ii)

- (i) The main advantage of CMOS circuit is
 - (i) high gain
 - (ii) high output impedance
 - (iii) low power consumption
 - (iv) high gain and high output impedance
- 2. Attempt any two of the following: 7×2=14
 - (a) Derive an expression for input impedance, output impedance, voltage gain and current gain of the transistor amplifier using h-parameters.
 - (b) Determine voltage gain and current gain of emitter follower, where $V_{CC} = 10 \text{ V}$, $R_B = 100 \text{ K}$, $R_E = 1 \text{ k}\Omega$, $h_{ie} = 1 \cdot 1 \text{ k}\Omega$, $h_{fe} = 100$, using approximate hybrid model.
 - (c) Derive an expression for output resistance and voltage gain of fixed bias FET amplifier.
- **3.** Attempt any two of the following: $7 \times 2 = 14$
 - (a) Calculate voltage gain of self-bias FET amplifier. The circuit uses $R_D=2~\mathrm{k}\Omega$, $R_S=1~\mathrm{k}\Omega$, $r_d=40~\mathrm{k}\Omega$, $g_m=2~\mathrm{mA}/V$, $R_G=2~\mathrm{M}\Omega$.
 - (b) Determine input resistance and output resistance of voltage series feedback amplifier.

- (c) Briefly explain the characteristics of negative feedback amplifier.
- 4. Attempt any two of the following: $7\times2=14$
 - (a) With a neat diagram, explain the construction and operation of depletion MOSFET. Also write the drain and transfer characteristics.
 - (b) Calculate the voltage gain for each stage of this amplifier circuit (both as ratio and in units of decibels), then calculate the overall voltage gain :

(c) Calculate the voltage gain of this amplifier circuit (A_V) :

I Turn (wer i

- 5. Attempt any two of the following: 7×2=14
 - (a) Obtain the expression for overall lower and higher cut-off frequency for a multistage amplifier.
 - (b) Explain circuit diagram of conventional
 full-wave rectifier.
 - (c) With neat circuit diagram, explain the working of Zener diode and I-V characteristics.
- **6.** Attempt any two of the following: $7 \times 2 = 14$
 - (a) Define the following:
 - (i) Common mode rejection ratio (CMRR)
 - (ii) Gain bandwidth product
 - (iii) Slew rate of op-amp
 - (b) State the Barkhausen condition for an electronic system to oscillate with feedback.
 - (c) Explain the circuit diagram of lead-lag compensator using op-amp.
- **7.** Attempt any two of the following: $7 \times 2 = 14$
 - (a) Draw circuit diagram of an RC phase shift oscillator and obtain an expression for its frequency of oscillation.

- (b) Draw circuit diagram of instrumentation amplifier and obtain an expression of voltage gain.
- (c) With neat circuit diagram, generate square-wave form.
- 8. Attempt any two of the following: $7 \times 2 = 14$
 - (a) With $g_m = 50 \text{ mA/V}$, $r_{be} = 1 \text{ k}\Omega$, $C_e = 1 \text{ pf}$, $C_c = 0.2 \text{ pf}$, determine the values of f_{β} and f_{T} .
 - (b) Prove the following:

$$f_H = \frac{g_m + g_{be}}{2\pi (C_L + C_e)}$$

Where $C_L = load$ capacitor.

- (c) With a neat diagram, explain construction of n-channel of JFET and also draw its characteristics.
- 9. Attempt any two of the following: 7×2=14
 - (a) Describe Miller effect and derive an equation for Miller input and output capacitor.
 - (b) With suitable diagram, explain P-N junction diode and also draw its I-V characteristics.
 - (c) Explain positive clipping and negative clamping circuits