B.Tech 3rd Semester Exam., 2020 (New Course)

BASIC ELECTRONICS

Time: 3 hours Pull Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- Fill in the blanks/Answer any seven of the following: 2×7=14
 - (a) In CB configuration, output characteristics may be shown by plot of _____.
 - (b) The ____ carriers enter the channel region through the ____ terminal and leave the channel through the ____ terminal in JFET.
 - (c) Mention the advantages of Wien bridge oscillator.
 - (d) What is reverse leakage current in CE configuration?

- (e) How is amplifier different from the oscillator?
- (f) Name the breakdown mechanism in the lightly doped P-N junction diode under reverse biased condition.
- (g) Draw the V-I characteristics of photodiode.
- (h) What is transconductance with reference to JFET?
- (i) What is the effect of removing bypass capacitor across the emitter resistor in case of CE amplifier?
- (i) What is meant by phase reversal?
- 2. (a) Find the DC voltage, ripple factor and efficiency for the half-wave rectifier given in the circuit below:

What should be PIV of the diode used? If bridge rectifier is used for same power supply, what will be the value of DC voltage and PIV of diode?

7

(b) Calculate the range of I_L and R_L so that V_{RL} being maintained at 10 V and also calculate the value of maximum voltage rating in the circuit given below:

3. (a) Draw the waveform of output V_o and explain the operation of circuit given below:

- (b) Discuss the application of SCR as a power control with the help of circuit diagram.
- (a) For the network given below, determine the following parameters using the approximate equivalent model.

Voltage gain A_{ν} , current gain A_{i} , input impedance Z_{i}' and Z_{i} :

(b) Calculate the value of R_1 in the biasing circuit in the figure given below so that the Q-point is fixed at $I_C = 8 \text{ mA}$ and $V_{CE} = 3 \text{ V}$:

7

7

7

7

7

- 5. (a) Given a deletion-type MOSFET. In the positive V_{GS} region, does the drain current increase at a significantly higher rate than for negative value? Does the I_D curve become more and more vertical with increasing positive values of V_{GS}?
 - (b) Draw V-I characteristic curves of JFET and mark various regions. Explain how FET is voltage-controlled device.
- 6. (a) Explain the working of single-stage common emitter amplifier with the help of circuit diagram. Draw and explain the DC load-line analysis of this amplifier.
 - (b) A single-stage amplifier has voltage gain of 10 and bandwidth of 1 MHz. Three such stages are cascaded and negative feedback of 10% is applied to the cascade stage. Find out the overall voltage gain and bandwidth of cascade stage with feedback.

- 7. (a) Explain the operation of Colpitts oscillator with the help of circuit diagram.
 - (b) Draw the block diagram and explain the operation of sweep frequency generator.

7

7

7

- (a) Discuss with the help of circuit diagram, the purpose of providing negative feedback and positive feedback.
 - (b) Draw the circuit diagram of voltageshunt feedback amplifier and derive the expression of closed-loop voltage gain using op-amp.
- 9. (a) Explain the operation performed by the circuit given below and derive the expression of output voltage V_o :

AK-21/196

AR-4., -.

(Continued)

7

7

(b) Op-amp can be used to add the DC voltage (addition operation). Draw the circuit and explain the operation of adder using op-amp in non-inverting mode.

7

Code: 101302