BCA 4th Semester Exam., 2018

DIGITAL ELECTRONICS, COMPUTER SYSTEM ARCHITECTURE AND ORGANIZATION

ime: 3 hours

Full Marks: 60

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **SEVEN** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question Nos. 1 is compulsory.

1. Choose the correct answer:

 $2 \times 6 = 12$

(a) What is the octal equivalent of given binary number?

011001

- (i) 32
- (ii) 31
- (iii) 34
- (iv) 33

(Turn Over)

- (b) Identify the term, which indicates a set of logical address.
 - (i) Memory space
 - (ii) Disk space
 - (iii) Address space
 - (iv) Location
- (c) In which type of flip-flop, the indeterminate condition of the S-R flip-flop (when S = R = 1) is eliminated?
 - (i) Edge-triggered flip-flop
 - (ii) J-K flip-flop
 - (iii) D flip-flop
 - (iv) T flip-flop
- (d) The bulk of the binary information in a digital computer is stored in memory, but all computations are done in
 - (i) timing control
 - (ii) memory registers
 - (iii) processor registers
 - (iv) program control

- (e) What digit is added to the Excess-3 code generation?
 - (i) 3
 - (ii) 4
 - (iii) 2
 - (iv) 1
- A full-adder is simply a connection of two-half adders joined by
 - (i) AND gate
 - (ii) OR gate
 - (iii) NAND gate
 - (iv) NOR gate
- 2. Given the Boolean function

$$F = xy'z + x'y'z + xyz$$

- (a) List the truth table of the function.
- (b) Draw the logic diagram using the original Boolean expression.
- (c) Simplify the algebraic expression using

 8 4+4+4

 8 Boolean algebra.

(Turn Over)

3. (a) Simplify the following Boolean function in product-of-sums form by means of a four-variable map. Draw the logic diagram with (i) OR-AND gates and (ii) NOR gates:

 $F(w, x, y, z) = \Sigma(2, 3, 4, 5, 6, 7, 11, 14, 15)$

- (b) Construct a 16-to-1-line multiplexer with two 8-to-1-line multiplexers and one 2-to-1-line multiplexer. Use block diagrams for the three multiplexers. 64
- 4. (a) Convert the following decimal numbers to binary:

1231; 673; 1998

(b) Convert the following binary numbers to decimal:

101110; 1110101; 110110100

6+

- 5. (a) What is destructive reading of a memory cell? Give an example of destructive read cell.
 - (b) What is the distinction between the write time of a memory and its access time?

- 6. If a computer is a single-address computer, word addressed, has 64 operation codes and 16 K addresses, answer the following questions:
 - (a) What is the length of the instruction register?
 - (b) How many bits are there in the PC register?
 - (c) What is the length of ACC register?

4+4+4

- 7. (a) What is the difference between a direct and an indirect address instruction? How many references to memory are needed for each type of instruction to bring an operand into a processor register?
 - (b) A CPU with a 20 MHz clock is connected to a memory unit whose access time is 40 ns. Formulate a read and a write timing diagram using a READ strobe and a WRITE strobe. Include the address in the timing diagram.
