Code: 302403

BBA 4th Semester Exam., 2018

OPERATIONS RESEARCH AND LOGISTICS

ime: 3 hours

Full Marks: 60

instructions:

- (i) All questions carry equal marks.
- (ii) There are SEVEN questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question Nos. 1 and 2 are compulsory.
- 1. Choose the correct answer of the following (any six):
 - (a) For a linear programming equations, convex set of equations is included in the region of
 - (i) feasible solutions
 - (ii) disposed solutions
 - (iii) profit solutions
 - (iv) loss solutions
 - (b) In graphical solutions of linear inequalities, solution can be divided into
 - one subset
 - (ii) two subsets
 - (iii) three subsets
 - (in) four subsets

⁸AK/492

(Turn Over)

- (c) In linear programming, objective function and objective constraints are
 - (i) solved
 - (iii) linear
 - (iii) quadratic
 - (iv) adjacent
- (d) Which technique is used in finding solution for optimizing a given objective such as profit maximization or comminimization under certain constraints?
 - (i) Queuing theory
 - (ii) Waiting line
 - (iii) Both (i) and (ii)
 - (iv) Linear programming
- (e) The operations research technique, special used to determine the optimum strategy
 - (i) decision theory
 - (ü) simulation
 - (iii) game theory
 - (iv) None of the above
- (f) Operations research approach is
 - (i) multi-disciplinary
 - (ii) scientific
 - (iii) initiative
 - (iv) All of the above

- (g) An optimization model
 - (i) provides the best decision
 - (ii) provides decision within its limited context
 - (iii) helps in evaluating various alternatives

(iv) All of the above

- (h) The distinguishing feature of an LP model is
 - (i) relationship among all variables is linear
 - (ii) it has single objective function and constraints
 - (iii) value of decision variables is nonnegative
 - (iv) All of the above
- (i) Transportation models can be used for which of the following decisions?
 - (i) Facility location
 - (ii) Production mix
 - (iii) Media selection
 - (iv) Portfolio selection
 - (v) Employee shift scheduling

- (j) A transportation problem
 - is a special case of the linear program. ming problem
 - (ii) can be solved by linear programming, but is solved more efficiently by a special-purpose algorithm
 - (iii) may give an initial feasible solution rather than the optimal solution
 - (iv) requires the same assumptions that are required for linear programming problems
 - (v) All of the above
- 2. Answer any three of the following:
 - (a) Explain the scope and methodology of operations research.
 - (b) Discuss the difference between decision making under certainty and decision making under uncertainty.
 - (c) Describe the meaning of EMV and EVPI.
 - (d) Discuss the role of sensitivity analysis in linear programming.
 - (e) "Linear programming is one of the most frequently and successfully used operations research technique to managerial and business decisions." Elucidate.

- 3. "The primary contribution of the game theory has been its concept rather than its formal application for solving real problems." Explain.
- Two products X and Y, both require processing time on machines I and II. Machine-I has 200 hours available and Machine-II has 400 hours available. Product X requires one hour on Machine-I and four hours on Machine-II. Product Y requires one hour on Machine-II and one hour on Machine-II. Each unit of product X yields ₹ 500 profit and each unit of Y yields ₹ 250. Formulate the problem as LPP.
- 5. Solve the following LP problem by using simplex method:

Minimize :

$$Z = 4x_1 + 4x_2 - x_3$$

subject to

$$2x_1 + x_2 \ge 10$$

$$-3x_1 + 2x_2 \le 6$$

$$x_1 + x_2 \ge 0$$

$$x_1, x_2 \ge 0$$

- occurs at the rate of 2 per shift. There is only one hot plate available for vulcanizing, and it can vulcanize on an average 5 belt-snaps per shift.
 - (a) What is the probability that when a belt snaps, the hot plate is readily available?

- (b) What is the average number of belts in the system?
- (c) What is the average waiting time of an arrival?
- (d) What is the average waiting time plus vulcanizing time?
- Explain the transportation and transhipment problems.

* * *