Code: 011511

B.Tech 5th Semester Exam., 2018

STRUCTURAL ANALYSIS-I

Time: 3 hours

Full Marks: 70

Instructions:

Six

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following (any seven): 2×7=14
 - (a) In case of conjugate beam the internal hinged is converted into which support?
 - (i) Fixed
 - √ii) Hinged
 - (iii) Free
 - (iv) Roller

- (d) Flexibility matrix method is based on the
 - (i) static indeterminacy
 - (ii) kinematic indeterminacy
 - (iii) Both (i) and (ii)
 - (iv) None of the above

(b) The ordinates of influence line diagram for bending moment always have dimension of

- (i) force
- (ii) force × length ~
- (iii) length

(ip) None of the above

(c) A three-hinged parabolic arch of span 20 and rise 5 carries UDL of intensity 15 kN/m over whole span, the value of bending moment at a section 5 m from left end is

- (i) $\frac{wL^2}{8h}$
- (ii) $\frac{wL^2}{4}$
- (iii) $\frac{wL^2}{8}$
- (iv) zero

- (e) In a simply supported beam, a load 20 kN is placed at A which is at a distance of 6 m from the left caused the deflection at B of 10 mm. When the load is 10 kN at B which is same distance from the right end, then find the deflection at point A.
 - (i) 10 mm
 - (ii) 5 mm
 - (iii) 2.5 mm
 - (iv) 1 mm
- (f) The Castigliano's theorem is applicable for the structures
 - (i) determinate
 - (ii) indeterminate
 - (iii) Both (i) and (ii)
 - (iv) None of the above
- (g) The degree of kinematic indeterminacy of a pin-jointed space frame is given by

- (ii) 3j-r
- (iii) 6j-r
- (iv) j-6r

- (h) The rate of change of bending moment in any structure is equal to the
 - (i) bending moment
 - (ii) stress
 - (iii) weight
 - (iv) shear force
- (i) A cantilever beam of span L carries point load of intensity W kN at the free end and another beam which is simply supported at both ends of length L carries point load W kN at the center. What is the ratio of maximum deflection of cantilever beam to simply supported beam?
 - (i) 16
 - (ii) 8
 - (iii) 6
 - (iv) 24
- (j) The strain energy stored in the member due to bending per unit volume is given by

$$\sqrt{1}$$
 $\frac{E^2}{2E}$

(ii)
$$\frac{f^2}{4E}$$

(iii)
$$\frac{f^2}{6E}$$

(iv)
$$\frac{f^2}{3E}$$

2/(a)

Describe the differences between determinate and indeterminate structures. Also determine static and kinematic indeterminacy of structures shown in Fig. 1:

Fig. 1

- (b) A three-hinged parabolic arch ACB of span 30 m has its left support at depth 4 m and right support at depth 16 m below the crown hinge C. The arch carries a point load of 60 kN at a distance of 5 m from left side of C and point load of 120 kN at a distance of 10 m from right side of C. Find the reaction at the supports and the bending moment under the loads.
- 3. Three wheel loads 60 kN, 40 kN and 50 kN spaced at 2 m and 2 m, respectively roll on girder of span 20 m from left to right with the 60 kN load leading. Find maximum and absolute maximum bending moment that can occur at a section 6 m from the left support. Also determine maximum positive and negative shear force at that section.

14

7

7

4. (a) Find out horizontal and vertical deflections of point A of circular structure shown in Fig. 2, El is constant:

- (b) Derive and describe the Maxwell law of reciprocal deflection theorem and also its generalized form.
- 5. A beam AB of length L simply supported at the ends carries a point load W at a distance from the left end and b distance from right end. Find the deflection under the load and the maximum deflection.
- span 30 m has its left support at depth 4 m and right support at depth 16 m below the crown hinge C. The arch carries a point load of 60 kN at a distance of 5 m from left side of C and point load of 120 kN at a distance of 10 m from right side of C. Find the reaction at the supports and the bending moment under the loads.

7

7

14

(b) Find the forces in each member by method of tension coefficient of the Fig. 3:

- 7. (a) A cable is supported between two points 40 m horizontal apart. The left support is 5 m above the right support. The cable carries a load of 6 kN/m on the horizontal span. The lowest point of cable is 5 m below the left support. Find the maximum tension in the cable.
 - (b) Draw the influence line diagram of the structure as shown in Fig. 4 for reaction at A, reaction at B, shear force and bending moment at section E:

Also find the ordinates of influence line diagrams.

8. Find vertical deflection, horizontal deflection and slope at end A of the frame member ABCD shown in Fig. 5:

Fig. 5

Take $E = 210 \text{ kN/mm}^2$, $I_{AC} = 4 \times 10^7 \text{ mm}^4$ and $I_{CD} = 8 \times 10^7 \text{ mm}^4$.

- (a) What is the difference between flexibility matrix and stiffness matrix? Discuss in detail.
 - (b) Determine the stiffness matrix of the structure shown in Fig. 6:

* * *

7

Code: 011511

14

7