Code: 104302

B.Tech 3rd Semester Exam., 2020 (New Course)

ELECTRICAL AND ELECTRONIC MATERIAL

Time: 3 hours Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct option/Answer the following (any seven): 2×7=14
 - (a) Fermi energy level
 - (i) is the top most filled energy level at 0 K temperature
 - (ii) is the top most filled energy level at 0°C temperature
 - (iii) separates valance band and conduction band
 - (iv) None of the above
 - (b) Electronic bands are formed due to
 - (i) split up of energy levels
 - (ii) satisfy Pauli's exclusion principle
 - (iii) the shift in energy levels
 - (iv) All of the above

- (c) Ferroelectric domains in a material represent
 - (i) region of randomly-oriented dipoles inside a ferroelectric material
 - (ii) region of oriented dipoles in a similar direction
 - (iii) region of randomly-oriented grains
 - (iv) region of oriented grains
- (d) What are the conditions for a physical entity to be eligible for the particle?
 - (i) It should have momentum
 - (ii) It should have mass
 - (iii) Any one of its variables should be discreet
 - · (iv) All of the above
- (e) In a direct bandgap semiconductor
 - (i) the two points of intersection of a vertical line with the E-K curve of both valance band and conduction band are at the same momentum
 - (ii) the two points of intersection of a vertical line with the E-K curve of both valance band and conduction band are having the same wave vector

- (iii) the K value of the lowest point of the conduction band is equal to the K value of highest point of valance band
- (iv) the transitions of electrons take place directly
- (v) All are correct
- (f) The shape of E-K diagram of the conduction band and valance band is
 - (i) horizontal
 - (ii) vertical
 - (iii) parabolic
 - (iv) None of the above
- (g) Which of the following methods is used to produce the sound of frequency more than 20 kHz?
 - (i) Magnetostriction method
 - (ii) Piezoelectric method
 - (iii) Inverse Piezoelectric method
 - (iv) Ultrasonic interferometer
- (h) An intrinsic semiconductor is
 - (i) free-electron free
 - (ii) defect free
 - (iii) dopant free
 - (iv) All of the above

- (i) What is dielectric resonance?
- (j) What is a Cooper pair?
- 2. (a) Represent graphically the electron occupancy of allowed energy bands for an insulator, metal, semi-metal and semiconductor. Explain clearly the difference between a semi-metal and semiconductor.
 - (b) Describe a technique for measuring the effective mass of electrons and holes. 7+7
- 3. (a) What do you understand by conductivity? Consider the conductivity of a semiconductor, $\sigma = en\mu_n + ep\mu_h$. Will doping always increase the conductivity, where, e is unit electronic charge, n is electron concentration and μ_n (μ_h) is electron (hole) mobility?
 - b) What is pyroelectricity? What are its direct and converse effects? 7+7
- 4. (a) What is meant by dielectric constant?

 Explain the origin of electronic polarization.
 - (b) What are paramagnetic materials? Explain the spin paramagnetism with typical electronic configurations. How susceptibility varies with temperature for a paramagnetic material?

- 5. (a) Explain the Hall effect with suitable example.
 - (b) What is Fermi-Dirac statistics? How the Fermi-Dirac function varies with temperature? 7+7
- 6. (a) What is a hole in semiconductor?

 Explain the movement of hole in semiconductors.
 - (b) Consider a p-type Si crystal that has been doped uniformly with B with a concentration of 10^{15} cm⁻³. We wish to convert this to an n-Si with a conductivity $25 \, \Omega^{-1}$ cm⁻¹ within 10 percent. What is the donor concentration we need?
- 7. (a) What are degenerate and nondegenerate semiconductors? Explain with suitable energy band diagram.
 - (b) Explain the process of getting electronic grade silicon with suitable diagram. 7+7
- 8. (a) How mirror finished wafer is prepared?
 - (b) Explain theory of low-temperature superconductors. 7+7

- 9. (a) What is a PCB core made of? What are the techniques used for patterning a PCB?
 - (b) Explain the process of creating a via in PCBs. 7+7

Code: 104302

* * *