(2)

Code: 100203

B.Tech 2nd Semester Exam., 2021

(New Course)

CHEMISTRY

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **MINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
 - 1. Answer any seven questions in brief: 2×7=14
 - (a) State de Broglie's principle.
 - (b) What is an orbital?
 - (c) What are the shapes of BF₃ and ClF₃ molecules?

- (d) Out of NH₃, PH₃, AsH₃ and SbH₃, which possesses largest bond angle? Give reason.
- (e) Out of Cr²⁺ and Cr³⁺, which one is stable in aqueous solution?
- (f) Cu⁺ is colourless but Cu²⁺ is coloured. Why?
- (g) What is selection rule?
- (h) A gas expands against vacuum. What is the work done on it?
- (i) What is the condition for a reaction to be in equilibrium?
- (j) The presence of CO₂ in boiler feed water should be avoided. Why?
- 2. (a) A water sample had the following constituents per litre:

$$CaCO_3 = 160 \text{ mg}$$

$$MgHCO_3 = 150 mg$$

$$CaSO_4 = 136 \text{ mg}$$

$$MgSO_4 = 120 \text{ mg}$$

$$NaCl = 10 mg$$

Calculate the quantity of temporary and permanent hardness in the water sample. Calculate the quantity of lime (78% purity) and soda (92% purity) required for softening of 25 million litre of above water sample.

9

(b) In an experiment to determine the hardness of a sample of water, 50 mL of N/50 Na₂CO₃ solution was added to 200 mL of water sample. After complete precipitation of insoluble carbonate, the unreacted Na₂CO₃ was titrated against N/50 H₂SO₄ solution, when 20 mL of acid was required. Calculate the hardness and comment on the nature of hardness so determined.

5

3. (a) Write short notes on the following: 10

[i] Photoelectric effect

- (ii) Heisenberg's uncertainty principle
- (b) How many photons of light having a wavelength of 3000 Å are necessary to provide 1 J of energy?

 $(h = 6.626 \times 10^{-34} \text{ J-s})$

4. (a) Explain the behaviour of CO as ligand with different metal ions using molecular orbital theory.

6

(b) Draw the MO energy-level diagram for NO molecule. Using this diagram, calculate and explain bond order and magnetic behaviour of (i) NO, (ii) NO⁺ and (iii) NO⁻.

8

5. (a) Which type of electronic transition(s) is/are observed in UV-visible spectrum of aniline in the range 200 nm to 900 nm? Justify your answer with suitable figure. https://www.akubihar.com

6

(b) The internuclear distance of NaCl is 2·36 × 10⁻¹⁰ m. Calculate the reduced mass and moment of inertia of NaCl. (Atomic mass of Cl = 35 × 10⁻³ kg mol⁻¹ and Na = 23 × 10⁻³ kg mol⁻¹)

4

(c) Calculate the force constant for CO, if it absorbs at $2.143 \times 10^5 \,\mathrm{m}^{-1}$. (Atomic mass of $C = 12 \times 10^{-3} \,\mathrm{kg mol}^{-1}$ and $O = 16 \times 10^{-3} \,\mathrm{kg mol}^{-1}$)

4

6. (a) How many types of ¹H NMR signals are expected for (i) CH₃COOCH₂CH₃ and (ii) CH₃CHCl₂? Mention the relative intensity ratio for the signal(s) observed for (i) and (ii).

6

(b) 0.6 mol of NH₃ at 25 °C occupies a volume of 3 dm³. Calculate the pressure using van der Waals equation $(a = 0.417 \text{ N m}^4 \text{ mol}^{-2})$ and $b = 0.037 \times 10^{-3} \text{ m}^3 \text{ mol}^{-1}$.

Compare the above result with the pressure calculated using ideal gas equation.

- 7. (a) 7 mol of a monatomic ideal gas are compressed reversibly and adiabatically. The initial volume is $15 \,\mathrm{dm^3}$ and the final volume is $9 \,\mathrm{dm^3}$. The initial temperature is $27 \,^{\circ}\mathrm{C}$. (i) What would be the final temperature in this process? (ii) Calculate w, q and ΔU for the process. Given, $C_v = 20 \cdot 91 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ and $\gamma = 1 \cdot 4$.
 - (b) Write a cell representation (in proper cell representation) whose cell reaction is AgCl → Ag⁺ + Cl⁻, using the following standard electrode potentials at 298 K;

$$E_{AgCl/Ag, Cl^-}^{\circ} = 0.22 \text{ V}$$

$$E_{Ag^+/Ag}^{\circ} = 0.80 \text{ V}$$

Calculate E° of the cell. Calculate solubility product (or solubility constant) of AgCl and its solubility at 298 K.

8. (a) Write notes on the following:

(i) Optical isomerism of lactic acid

(ii) Optical isomerism of tartaric acid

(b). Differentiate between the following:

(i) Enantiomers and Diastereomers

(ii) Racemic mixture and Mesocompounds

9. (a) Explain the following:

..

7

7

6

- (i) Trichloroacetic acid is stronger acid than acetic acid.
- (ii) The amino group in aniline is o- and p-directing but nitro group is m-directing.
- (b) Arrange the following carbocations in order of increasing stability with suitable reasons:

 $C_6H_5CH_2^{+}$, $(CH_3)_3C^{+}$, $(C_6H_5)_2CH^{+}$, $CH_3CH_2^{+}$

(Turn Over)

8

7

7

22AK/41

(c) Write short notes on the following:

(i) Markownikoff's rule

(ii) Kharasch's rule

* * *

22AK-5140/**41** Code: 100203