Code: 103202

B.Tech 2nd Semester Exam., 2019

MATHEMATICS-II

(Linear Algebra, Transform Calculus and Numerical Method)

(New Course)

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are MINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer (any seven): 2×7=14
 - (a) If A is a 3-rowed square matrix such that |A|=2, then $|adj\{adj(adjA^2)\}|$ is equal to

#) 2⁴

617

(ii) 28

8

- (jii) 2¹⁶
- (iv) None of the above

(b) If 3, -2 are the eigenvalues of a nonsingular matrix A and |A| = 4, then eigenvalues of adj A are

(i)
$$\frac{3}{4}$$
, $-\frac{1}{2}$

(ii)
$$\frac{4}{3}$$
, -2

- (iv) None of the above
- (c) Let A be a skew-symmetric matrix of order n, then

$$(i)$$
 $|A| = 0$, if n is even

(ii)
$$|A| = 0$$
, if n is odd

(iii)
$$|A| = 0$$
 for all $n \in N$

(iv)
$$|A| \neq 0$$
, always

(d) If A is non-zero column matrix of the type $n \times 1$ and B is non-zero row matrix of the type $1 \times n$, then $\rho(AB)$ is

- (i) O
- (ii) 1
- (iii) n
- (iv) None of the above

(e) In regula-falsi method, the first approximation is given by

$$(y) x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

(ii)
$$x_1 = \frac{bf(b) - af(a)}{f(b) - f(a)}$$

fiii)
$$x_1 = \frac{bf(a) + af(b)}{f(a) - f(b)}$$

(iv)
$$x_1 = \frac{af(a) - bf(b)}{f(a) - f(b)}$$

- (f) While evaluating the definite integral by trapezoidal rule, the accuracy can be increased by taking
 - (i) large number of sub-intervals
 - (ii) even number of sub-intervals
 - (iii) h=4
 - (iv) a multiple of 3
- (g) Various types of Runge-Kutta methods are classified according to their
 - (i) degree
 - (ii) order
 - (iii) rank
 - (iv) Both (i) and (ii)

- (h) The value of $L\left\{\frac{\cos 10t}{t}\right\}$ is
 - (i) 0
 - (ii) 1
 - (iii) 2
 - (iv) Does not exist
- (i) Laplace transform of unit step function is

(i)
$$\frac{e^{-as}}{s}$$

(ii)
$$\frac{e^{as}}{s}$$

(iii)
$$\frac{e^{-as}}{s+1}$$

(iv)
$$\frac{e^{as}}{s+1}$$
.

- (j) Which function has Laplace transform even it is not piecewise continuous in the range?
 - (i) $\frac{1}{\sqrt{t}}$
 - (ii) $\frac{1}{\sqrt{t^2}}$
 - (iii) $\frac{1}{\sqrt{t^3}}$
 - (iv) All of the above

(a) Investigate for what value of λ and μ do the system of equations x+y+z=6, x+2y+3z=10 and x+2y+λz=μ have
(i) no solution, (ii) unique solution and (iii) infinite number of solution.

(b) Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

7

6

 (a) Verify Cayley-Hamilton theorem for the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Also obtain (i) A^{-1} , (ii) eigenvalues of A and A^{2} , and (iii) spectral radius of A. 8

(b) Diagonalize the matrix

$$A = \begin{bmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix}$$

by means of an orthogonal transformation. 4. (a) Find a real root of the equation xlog₁₀ x = 1.2 by using regula-falsi method correct to four significant digits.

(b) Show that the following two sequences, both have convergence of the second order with the same limit \(\frac{a}{a}\):

$$x_{m-1} = \frac{1}{2}x_m \left(1 + \frac{1}{x_m^2}\right)$$
 and $x_{m+1} = \frac{1}{2}x_m \left(3 - \frac{x_m^2}{a}\right)$

- 5. (a) Derive Newton's forward interpolation formula. http://www.akubihar.com
 - (b) Find the value of cos51°43' by Gauss's backward interpolation formula. Given that

x	50*	51*	52*	53*	54*
cos x	0-6428	0-6293	0-6157	0.6018	0.5878

(a) Solve the differential equation $\frac{dy}{dx} = y - x^2$ by Milne's method and compute y at x = 0.80. Given that

x	0-0	0.2	0.4	0.6
y	1	1-12186	1-46820	1.73790

8

7

7

7

J

(b) Using Adams-Moulton-Bashforth method, find y(1.4). Given

$$\frac{dy}{dx} = x^{2}(1+y), \ y(1) = 1, \ y(1\cdot1) = 1\cdot233,$$
$$y(1\cdot2) = 1\cdot548, \ y(1\cdot3) = 1\cdot979$$

- 7. (a) Solve $u_{xx} = u_t$ in 0 < x < 2, t > 0, u(0, t) = u(2, t) = 0, t > 0 and $u(x, 0) = \sin(\pi, x/2)$, $0 \le x \le 2$ using $\Delta x = 0.5$, $\Delta t = 0.25$ for one time step by Crank-Nicolson implicit finite difference method.
 - (b) Write an implicit method for solving the one-dimensional wave equation $u_{tt} = c^2 u_{xx}$, $0 \le x \le l$, t > 0.
- 8. (a) Evaluate

$$\int_0^\infty \left\{ \cos t \cdot \delta \left(t - \frac{\pi}{4} \right) \right\} dt$$

by using Laplace transform.

- (b) Find the Fourier transform of the function $f(t) = e^{-a|t|}$, $-\infty < t < \infty$, a > 0.
- 9. (a) Find the inverse Laplace transform of

$$\tan^{-1}\!\!\left(\frac{2}{s^2}\right)$$

(b) Solve the given partial differential equation by Laplace transform:

$$x\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = xt$$
, if $u(x, 0) = 0$, $u(0, t) = t$

8

* * *

10

7