Code: 303202

BCA 2nd Semester Exam., 2018

MATHEMATICS (Numerical Techniques)

Time: 3 hours Full Marks: 60

Instructions:

- (i) All questions carry equal marks.
- (ii) There are **SEVEN** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question Nos. 1 & 2 are compulsory.
- 1. Choose the correct answer of the following (any six):
 - The number of significant digits in the number 204-020050 is
 - (i) 5
 - (\ddot{u}) 6
 - (iii) 8
 - (iv) 9

(Turn Over)

(b) The convergence of which of the following methods is sensitive to starting value?

- (i) False position
- (ii) Gauss-Seidel method
- (iii) Newton-Raphson method
- (iv) All of the above
- Newton-Raphson method is used to find th root of the equation $x^2 - 2 = 0$. If iteration. are started from -1, then iterations will
 - (i) converge to -1
 - (ii) converge to $\sqrt{2}$
 - (iii) converge to $-\sqrt{2}$
 - (iv) No convergence
- In the Gauss elimination method for solving a system of linear algebraic equation triangularization leads to
 - (i) diagonal matrix
 - (ii) lower triangular matrix
 - (iii) upper triangular matrix
 - (iv) singular matrix

- (e) In which of the following methods, we approximate the curve of solution by the tangent in each interval?
 - (i) Picard's method
 - (ii) Euler's method
 - (iii) Newton's method
 - (iv) Runge-Kutta method
- (f) Match the following:
- A. Newton-Raphson
- Integration
- B. Runge-Kutta
- 2. Root finding
- C. Gauss-Seidel
- 3. Ordinary differential equations
- D. Simpson's rule
- 4. Solution of system of linear equations

The correct matching is

- (i) A-2, B-3, C-4, D-1
- (ii) A-3, B-2, C-1, D-4
- (iii) A-1, B-4, C-2, D-3
- (iv) A-4, B-1, C-2, D-3
- (g) If $\Delta f(x) = f(x+h) f(x)$, then a constant k, Δk equals
 - (i) 1
 - (ii) 0
 - (iii) f(k) f(0)
 - (iv) f(x+k)-f(x)
 - (v) None of the above

(Turn Over)

- (h) A root of the equation $x^3 x 11 = 0$ corrector four decimals using bisection method is
 - (i) 2·3737
 - (ii) 2·3838
 - (iii) 2·3736
 - (iv) None of the above
- (i) The order of errors in the Simpson's rule for numerical integration with a step size h is
 - (i) h
 - (ii) h^2
 - (iii) h3
 - (iv) h4
- (j) In which of the following methods proper choice of initial value is very important?
 - (i) Bisection method
 - (ii) False position
 - (iii) Newton-Raphson method
 - (iv) None of the above

- 2. Answer any three of the following:
 - Use quadratic convergent method to find the first approximation $x^{(1)}$ of $\sqrt[3]{28}$ if $x^{(0)} = 3$.
 - Show that the Newton method for finding reciprocals by solving (1/x)-c=0 results in the iteration, $x_{n+1} = x_n(2-cx_n)$, $n \ge 0$.
 - Let g(x) be a continuous function on [a, b], and suppose that g satisfies the property $a \le x \le b$ implies that $a \le g(x) \le b$. Then the equation x = g(x) has at least one solution in [a, b].
 - The function f(x) has the exact values shown in the table below:

_ ×	1	3	5
f(x)	4	-2	10
] [] [] _			

Using Newton's forward difference interpolation method, estimate the value of f(6).

- (e) Find the absolute and the relative error when x = 3.162 is used as an approximation to $x = \sqrt{10}$.
- 3. Show that equation $xe^x 1$ has a root in [1/2, 1]and find the approximation to this root within 10⁻¹, using bisection method.

(Turn Over)

- 4. Evaluate the integral $\int_{0}^{\pi/4} \sin 4x \, dx$, using trapezoidal rule with n = 4. Estimate the error bound and compute with exact error.
- 5. Given the table of values:

x	1.0	1.05	1.08	1.1
f(x)	2.72	3.29	3.66	3-90

quadratic Lagrange best the Construct interpolation polynomial to approximate the equation, $f(x) = 3xe^x - 2e^x$ at x = 1.04.

6. Consider the linear systems :

$$0.5x_1 + 1.1x_2 + 3.1x_3 = 6.0$$

$$2 \cdot 0x_1 + 4 \cdot 5x_2 + 0 \cdot 4x_3 = 0 \cdot 02$$

$$5 \cdot 0x_1 + 1 \cdot 0x_2 + 6 \cdot 5x_3 = 1 \cdot 0$$

Solve the systems using Gauss elimination method.

7. Use Runge-Kutta of order 2 with h = 0.1 to find the approximate value of y(0.3) of the initial value problem, y' = y(2 - y); $y(0) = 0 \cdot 1$.