Code: 011513

B.Tech 5th Semester Exam., 2018

MECHANICS OF SOLID-II

Time: 3 hours Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are MINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory
- Choose the correct answer any seven of the following: 2x7=14
 - (a) Flow stress corresponds to
 - (4) fluids in motion
 - 间 breaking point
 - (iii) plastic deformation of solids
 - (iv) rupture stress
 - (b) The total strain energy stored in a body is termed as
 - /t/ resilience
 - (tt) proof resilience
 - (m) modulus of resilience
 - fivi toughness

- (c) The safe twisting moment for a compound shaft is equal to the maximum calculated value
 - minimum calculated value
 - iiii mean rahie
 - the extreme value
- A vertical column has two moments of inertia (i.e., I_{XX} and I_{YY}). The column will tend to buckle in the direction of the
 - file areas of load
 - m perpendicular to the axis of load
 - maximum moment of inertia
 - fa∮ minimum moment of inertia
- When a body is subjected to a direct tensile stress (c) in one plane, then maximum normal stress occurs at a section inclined at _____ to the normal of the section.
 - *≨* 0°
 - #30°
 - /曲 45°
 - £# 90°

- (f) The Rankine's formula holds good for
 - (i) short columns
 - (ii) long columns
 - (iii) both short and long columns
 - (iv) weak columns
- (g) What is the nature of distribution of shear stress in a rectangular beam?
 - (i) Linear
 - (ii) Hyperbolic
 - (iii) Parabolic
 - (iv) Elliptic
- (h) A circular shaft subjected to twisting moment results in maximum shear stress of 60 MPa. Then the maximum compressive stress in the material is
 - (i) 30 MPa
 - (ii) 60 MPa
 - (iii) 90 MPa
 - (iv) 120 MPa

- (i) Shear centre is the point in or outside a section through which the shear force applied produces _____ in the beam.
 - (i) only twisting
 - (ii) only bending
 - (iii) twisting and bending
 - (iv) no twisting and bending
- (i) The variation of bending stress in a curved beam is
 - (i) cubic
 - (ii) linear
 - fiii) hyperbolic
 - fir) parabolic
- 2. (a) What do you understand by complimentary shear stresses?
 - (b) At a point P in a body for the given state of stress

$$[t_{ij}] = \begin{vmatrix} 10 & 10 & 10 \\ 10 & -5 & 10 \\ 10 & 10 & -5 \end{vmatrix} \text{ kN/cm}^2$$

determine the normal and shear stresses on a plane that are equally inclined to all the three axes. 3. Determine the principal stresses of a given stress at a point in three-dimensional stress system and also check their invariants:

- 4. (a) Under what conditions unsymmetrical bending occur in a beam?
 - (b) A beam of rectangular section 150 mm wide and 200 mm deep is used over a simply supported span of 6 m to support the concentrated loads of 4 kN each at 2 m from either support. The plane of loads make an angle of 30° with the vertical plane of symmetry. Find the direction of the neutral axis and the maximum bending stresses in the beam. 10
- 5. A curve bar of rectangular cross-section has a width 50 mm and depth 75 mm is curved in a plane perpendicular to its depth. The mean radius of curvature 100 mm. Find the position of neutral axis and maximum bending stresses at inner and outer faces caused by a moment of 3.75 kN-m tending to reduce the curvature. Also show bending stress distribution across the depth of the beam.

14

14

AK9/166 (Turn Over)

- 6. (a) Derive an expression for moment of resistance of a rectangular beam subjected to bending moment in the elastoplastic range, also find the shape factor.
 - (b) Find the shape factor for the channel shape beam as shown in the figure given below:

- 7. (a) State and prove the Maxwell's reciprocal deflection theorem.
 - (b) A rigid cantilever frame as shown in the figure given below, carries a load W at the free end. Assuming a constant value of El, determine the vertical and horizontal displacement of the free end C:

(Continued)

6

8

6

8

8.	(a)	What is Euler's curve? What is its importance?	5
	(1-)	A hollow steel strut hinged as both ends has an outside diameter of 64 mm, an inside diameter of 52 mm and 18 2-4 m long. The load is parallel to the axis but is eccentric. Determine the maximum value of eccentricity if the crippling load is 70% of Euler value. The yield stress is 300 MPa and $E \approx 205$ GPa.	9
9.	(a)	Why is hollow shaft preferred to solid shaft?	5
	(b)	Calculate the diameter of a solid shaft subjected to a torque of 1.5 kN-m and a bending moment of 1 kN-m, if the maximum shear stress is not to exceed 60 N/mm ² and the maximum normal stress is not to exceed 100 N/mm ² .	9

* * *

5