Code: 011725

B.Tech 7th Semester Exam., 2017

DESIGN OF HYDRAULIC STRUCTURES

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct option from the following 2×7=14 (any seven):
 - (a) In a trapezoidal channel having side slope m: 1, flow depth = D, longitudinal slope = S_0 , the maximum shear stress on the sides is about
 - (i) γDS_0
 - (ii) $0.99 \gamma DS_0$
 - (iii) $0.75 \gamma DS_0$
 - (iv) $(1/m)\gamma DS_0$
 - (b) Masonry or concrete sloping weirs are suitable for soft sandy foundations.
 - _# True
 - (ii) False

(Turn Over)

- Under tunnels have a capacity of
 - (i) 20% of canal discharge
 - (ii) 10% of canal discharge
 - (iii) 30% of canal discharge
 - (iv) None of the above
- Silt excluder is called as
 - (i) curative measure
 - (ii) preventive measure
 - (iii) both measures
 - (iv) None of the above
- A structure in which the drain is taken over a canal is called
 - (i) aqueduct
 - (ii) canal-syphon
 - (iii) syphon aqueduct
 - [iv] superpassage
- In a Sarda type fall, rectangular crest is designed for discharge
 - (1) up to 14 m³/s
 - $(ii) > 14 \text{ m}^3/\text{s}$
 - (iii) up to 5 m³/s
 - (iv) Unlimited

(g)	Gibbs'	module	ís	а	type	of	outlet,	which
	ensures							

- (i) constant discharge even if the water levels in the supply channel and water course fluctuate
- (ii) variable discharge as per need
- (iii) constant discharge into the watercourse when the water levels in the supply channel vary
- (iv) constant discharge for varying water levels in the watercourse for a given water level in the supply channel
- (h) Minimum modular head is defined as
 - (i) the ratio of the head recovered to the input head
 - (ii) range between lowest and highest limiting values of variables
 - (iii) extreme values of any variable beyond which an outlet is unable to act as a module
 - (iv) minimum difference between upstream and downstream water levels required by the module to pass the designed discharge

(i) Ti	ne	overflow	dam	is	a/	an
--------	----	----------	-----	----	----	----

- # gravity dam
- (ü) earthen dam
- (iii) weir
- (iv) None of the above
- Basic seismic coefficient for zone IV is given by
 - (i) 0:04
 - (ii) 0.02
 - (iii) 0.05
 - (iv) None of the above
- 2. (a) Explain tractive force approach for design of non-erodible channel.
 - (b) A wide rectangular channel carries clear water at a depth of 1.2 m. The channel bed is composed of coarse gravel of d₅₀ = 40 mm. Determine the slope of the channel at which incipient conditions exists. What is the discharge per unit width at this slope?
- 3. Draw a neat layout of a diversion headwork and indicate its various components. Briefly indicate the function of each component. 14

(Turn Over)

6

8

4. Calculate the average hydraulic gradient in a section of a hydraulic structure as shown below. Also find the uplift pressures at points A, B, C and D. Find the thickness of the floor at these points, take $\rho = 2 \cdot 24$:

- 5. What are different types of weirs? Explain with neat sketches, circumstances under which each type is adopted.
- 6. (a) What are different types of earth dams? Explain any one of them. 6
 - (b) Design an elementary profile of a gravity dam of height 50 m plus the freeboard. Convert it into a practical profile.
- 7. Fix suitable values for waterway, crest levels of weir and under sluices portions for the following data:

HFD =
$$10000 \text{ m}^3 / \text{s}$$
, RBL = $200 \cdot 0 \text{ m}$,
HFL = $206 \cdot 0 \text{ m}$, $f = 1$, afflux = $1 \cdot 0 \text{ m}$

14

Check for maximum flood.

14

14

8

What are different types of crossdrainage works that are necessary on a . **8.** (a) canal alignment? State briefly the conditions under which each one is used.

> Enumerate the steps of design for an aqueduct for the Barrel size, Transition of canal and Levels of trough.

Write notes on any three of the following: 14

- Exit gradient and its importance
- Canal escapes
- Modules
- Lock in navigation canal

* * *

8AK/81

8

6