masterranjeet.com

B.Tech 3rd Semester Exam., 2020 (New Course)

ANALOG ELECTRONIC CIRCUITS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- (v) Symbols and notations carry their usual meanings.
- 1. Answer any seven questions of the following:

 $2 \times 7 = 14$

- (a) What is the function of clamping circuits?
- (b) Explain diode positive shunt clipper circuit with waveforms.
- Write the important characteristics of common source configuration of JFET.

- (d) Explain the half-wave rectifier with suitable diagram.
- What is integrator circuit?
- Write down the three differences between BJT and JFET.
- Explain the important characteristics of Darlington emitter-follower.
- (h) What is precision rectifier circuit?
- the advantages of are h-parameters?

Answer any four questions. Attempt any two parts from each:

- Derive the expression for stability factor for fix bias circuit with respect to Ico. V_{BE} and β .
 - State and prove Miller's theorem.

AK-21/190

A voltage divider biased circuit has $R_1 = 39 \,\mathrm{k}\Omega$, $R_2 = 82 \,\mathrm{k}\Omega$, $R_C = 3.3 \,\mathrm{k}\Omega$, $R_E = 1 k\Omega$ and CC = 18V. The silicon transistor has used $\beta = 120$. Find O-point and stability factor. $7 \times 2 = 14$

- 3. (a) An op-amp has gain bandwidth product of 15 MHz. Determine the bandwidth of op-amp when $A_{CL} = 500$. Also, find the maximum value of A_{CL} when frequency is 200 KHz.
 - (b) What are the advantages and features of instrumentation amplifier? Derive the expression for output voltage of instrumentation amplifier.
 - (c) The data sheet of N-channel JFET gives the following details:

 $I_{DSS} = 9 \text{mA}$ and pinch-off voltage = -4.5 V

- (i) At what value of V_{GS} will I_D be equal to 3 mA?
- (ii) What is its g_m at this I_D ? $7 \times 2 = 14$
- 4. (a) Derive an expression for input impedance voltage gain, current gain and output impedance for an emitterfollower circuit using h-parameter model for the transistor.

- (b) Explain the need of cascading amplifier.
 Draw and explain the block diagram of two-stage cascade amplifier.
- (c) Derive an expression for frequency of oscillators in Wien bridge oscillator.

7×2=14

- 5. (a) Explain the principle of operation of oscillator and effect of loop gain (Aβ) on the output of oscillator.
 - (b) With the help of neat diagram, explain the construction working and characteristics of N-channel depletiontype MOSFET.
 - (c) A given amplifier arrangement has the following voltage gains:

 $A_{\nu 1} = 10$, $A_{\nu 2} = 20$ and $A_{\nu 3} = 40$ Calculate the overall voltage gain and determine the total voltage gain in dB.

7×2=14

- 6. (a) Determine Z_{in} , Z_{out} and A_{v} for JFET common source amplifier with fixed bias configuration using AC equivalent small signal model.
 - (b) With the help of neat diagram, explain the construction working and characteristics of N-channel JFET.
 - (c) Explain the law frequency response of single-stage RC-coupled amplifier. 7x2=14
- (a) Obtain an h-parameter equivalent circuit of CB and CE configurations.
 - (b) With the help of block diagram, explain the concept of feedback.
 - (c) Discuss with the help of circuit example, the purpose of providing—
 - (i) negative feedback;
 - (ii) positive feedback in amplifier. 7×2=14
- 8. (a) Draw the high frequency equivalent circuit of an emitter follower and derive the expression of upper cut-off frequency f_H .

- (b) Transistor's short circuit current gain is measured to be 25 at a frequency of 2 MHz. If $f_B = 200$ kHz, calculate the following:
 - (i) The current gain bandwidth product
 - (ii) h_{fe} at low frequency
 - (iii) Short circuit current gain at 10 MHz and 100 MHz
- (c) A phase-shift oscillator uses three identical R-C sections in feedback network. The value of components are $R = 100 \, \text{k} \, \Omega$ and $C = 0.01 \mu \text{F}$. Calculate the frequency of oscillator. $7 \times 2 = 14$
- 9. (a) An amplifier has a voltage gain of 40. The amplifier is now modified to provide a 10% negative feedback in series with the input. Determine the following:
 - (i) Voltage gain with feedback
 - (ii) Amount of feedback in dB
 - (iii) Loop gain

- (b) Write the important advantage of a negative feedback amplifier and show that how bandwidth of an amplifier increases with negative feedback.
- (c) What is transistor biasing? Explain emitter bias circuit with relevant circuit and equations. 7×2=14

Code: 100302

 $\star\star\star$

AK-21-3780/190