Code: 102611

B.Tech 6th Semester Exam., 2022

(New Course)

RENEWABLE ENERGY SYSTEMS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- Answer any seven of the following questions:

 $2 \times 7 = 14$

- (a) Define cut-out speed of a wind turbine.
- (b) Mention the different types of biofuels.
- (c) Draw an equivalent circuit of a practical solar PV cell.
- (d) What do you mean by MPPT?
- (e) What is solar time?

AK23/115

1 Turn Over

- What do you understand by energy conservation?
- (g) What are the different types of solar py panels?
- (h) What is the difference between horizontal axis and vertical axis wind turbines?
- (i) Draw the power versus wind speed characteristics of a wind turbine.
- (i) How can we measure the solar irradiance?
- (a) Discuss the main features of renewable energy sources and explain the importance of non-conventional energy sources in the context of global warming.

(b) What is the status of non-conventional energy sources in India and what are their future prospects? 7

7

7

3. (a) Discuss the principle of a solar collector. How can collector coating be used to improve the performance of a collector?

(b) Draw a schematic diagram of a solar pond based electric power plant with cooling tower and explain its working.

AK23/115 (Continued)

4,	(a)	Explain the I-V characteristics of a solar cell and define fill factor. What is the significance of fill factor?	
	<i>(b)</i>	A P-V system feeds a d.c motor to produce 1 hp at the shaft. The motor efficiency is 85%. Each module has 36 multi-crystalline silicon solar cells arranged in a 9×4 matrix. The cell size is 125 mm × 125 mm and the cell efficiency is 12%. Calculate the modules required in the P-V array. Assume global radiation incident normally to the	
		panel is 1 kW/m ² 8	
5.	(a)	Explain the operation wind energy system with a neat sketch.	
	(b)	A HAWT has the following data:	
		Speed of wind = 10 m/s at 1 atm	
		and 15 °C	
		Diameter of rotor * 120 m	
		Speed of rotor = 40 rpm	
		Calculate the maximum possible torque produced at the shaft.	
6.	. (a)	Explain the process of production of biogas from biomass. What are the main advantages of anaerobic digestion of biomass?	

(b) The consumption pattern of the biogas in a biogas plant is given below:	
20 l/h from 08:00 to 12:00 hours	
40 I/h from 13:00 to 16:00 hours	
10 I/h from 20:00 to 24 00 hours	
Determine the size of the gusholder and	
the required gasholder capacity	6
7. (a) Explain the various types of generating	
systems and generators considered for	
use in micro hydro resources.	6
· · · · · · · · · · · · · · · · · · ·	
(b) Estimate the net power available from a	
proposed micro hydro scheme at a site	
having a small stream with a flow rate of	
200 litres per second at ahead of 35 m	
Assume density of freshwater as	
995 kg/m ³ and overall efficiency of the	
whole system as 50%.	8
(a) Explain the variation of power output of a wind turbine with tip speed of the	
rotor.	7
(b) With the help of a schematic diagram,	
explain the working of a solar water	
heating system	7

8. (a)

18/37/115

- 9. Write short notes on the following:
 - (a) Solar refrigeration and air conditioning systems

14

(b) Pitch-regulated and stail-regulated wind turbine

. . .