Code: 011616

B.Tech 6th Semester Exam., 2018

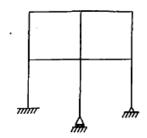
STRUCTURAL ANALYSIS-II

Time: 3 hours

Full Marks: 70

Instructions:

(i) The marks are indicated in the right-hand margin.


(ii) There are **NINE** questions in this paper.

(iii) Attempt **FIVE** questions in all.

(iv) Question No. 1 is compulsory.

1. Choose and write the correct option (any seven): 2×7=14

(a) What is the kinematic indeterminacy for the frame shown in the figure below? (Member inextensible)

(i) 6

(ii) 11

(iii) 12

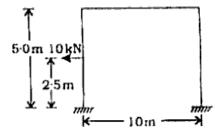
(iv) 21

(b) What is the variation of influence line for stress function in a statically determinate structure?

- (i) Parabolic
- (ii) Bilinear
- (iii) Linear
- (iv) Uniformly rectangular

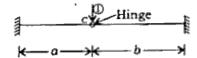
(c) The maximum bending moment under a particular point load among a train of point loads crossing a simply supported girder occurs when that load is

- (i) at mid-span
- (ii) at 1/3rd span
- (iii) at one-quarter span
- (iv) so placed that the point load and the point of CG of the train of loads are equidistant from the mid-span
- (d) The area of influence diagram for the reaction at the hinged end of a uniform propped cantilever beam of span L is


(i) 3L/8

(i)/L/2

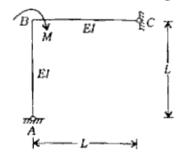
(iii) L/4


(iv) L/8

- (e) What is the horizontal thrust in a symmetric parabolic two-hinged arch of span L and central rise (y) subjected to a uniformly distributed load of intensity (w) per unit length over its entire span?
 - (i) $wL^2/(4y)$
 - (ii) $wL^2/(8y)$
 - (iii) $wL^2/(12y)$
 - (iv) $wL^2/(16y)$
- (f) For the portal frame shown in the diagram below, the final end moments are M_{AB} = 15 kN-m; M_{BA} = 10 kN-m; M_{CD} = 20 kN-m. The end moment at M_{DC} will be

- (i) 10 kN-m
- (ii) 20 kN-m
- (iii) 30 kN-m
- (iv) 40 kN-m

- (g) A beam is hinged at end A and fixed at B. A moment M is applied at end A. What is the moment developed at end B?
 - (i) M
 - (ii) M
 - (iii) M/2
 - Yeur-M/2
- (h) The stiffness coefficient k₁₁ for the beam as shown below


is

(i)
$$EI\left(\frac{1}{a^3} + \frac{1}{b^3}\right)$$
 (ii) $2EI\left(\frac{1}{a^3} + \frac{1}{b^3}\right)$

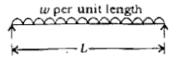
(iii)
$$3EI\left(\frac{1}{a^3} + \frac{1}{b^3}\right)$$
 (iv) $4EI\left(\frac{1}{a^3} + \frac{1}{b^3}\right)$

- (i) The moment distribution method in the structural analysis falls in the category of
 - displacement method
 - (ii) force method
 - (iii) flexibility method
 - (iv) first-order approximate method

(j) What is the rotation of the member at C for a frame as shown in figure below?

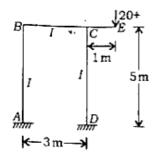
- (i) ML / (3EI)
- (ii) ML / (4EI)
- (iii) ML / (6EI)
- (iv) ML / (12EI)

Using generalized coordinate approach, find shape functions for two nodded bar/truss element.

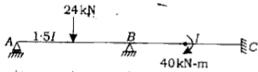

14

Find flexibility and stiffness matrix for a cantilever beam element having length L and constant flexural stiffness.

14



 Using three-moment method, obtain central deflection having constant El.



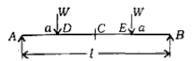
(Turn Over)

Analyze the beam shown in the figure below by slope deflection method. Draw BMD and SFD:

Analyze the rigid jointed frame by moment distribution method. Draw SFD and BMD.

K-1·5m X-1·5m-X-1·5m-X-1·5m-X

A simply supported beam of 10 m span, a 7 m long UDL of 10 kN/m intensity crosses the beam from left to right. When the head of load is 1 m from the right support, find the support reactions, BM and SF at the midspan using the influence line diagram.


8. A two-hinged semicircular arch of radius R carries a distributed load uniformly varying from zero at left end to w per unit run at the right end. Determine the horizontal thrust at each support.

14

14

14

9 A beam of length l is simply supported at ends and carries a concentrated load W at a distance a from each end. Find the slope at each end and under load. Also find the deflection under each load and central deflection by conjugate beam method.

* * *

8AK-1950/380

Code: 011616

14