Code: 211405

B.Tech 4th Semester Exam., 2019

DISCRETE MATHEMATICAL STRUCTURE AND GRAPH THEORY

Time: 3 hours Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer (any seven):

2×7=14

- (a) The statement $p \rightarrow q$ is logically equivalent to
 - (i) $p \vee q$
 - (ii) $p \vee \sim q$
 - _(iii) ~ p v q
 - (iv) $\sim p \rightarrow q$

- (b) The contrapositive of the conditional statement $p \rightarrow q$ is
 - (i) $q \rightarrow p$
 - (ii) $\sim p \rightarrow \sim q$
 - $(iii) \sim p \rightarrow q$
 - $(iv) \sim q \rightarrow \sim p$
- (c) If A and B are two nonempty sets having n elements in common, then A×B and B×A will have how many elements in common?
 - →fij 2"
 - cher n2
 - fiii) n⁴
 - (iv) 2n
- (d) If a set A have n elements, then how many relations will be there on set A?
 - (i) n^2
 - $f(i) 2^{n^2}$
 - (m) 2"
 - hu 2n

If $P(\phi)$ represents the power set of ϕ , then $n(P(P(P(\phi))))$ equal to

(3)

- (i) 1
- (ii) 2
- (iii) 3
- Yeu) 4
- For the poset [{3, 5, 9, 15, 24, 45}; divisor of] the bus of {3, 5} is
 - (i) 3
 - (ii) 5
 - (iii) 15
 - (iv) 45
- If (S, *) is a monoid, where $S = \{1, 2, 3, 6\}$ and * is defined by a*b = lcm(a, b), where $a, b \in S$, then the identity element is
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) 6

- The total number of subgroups of group G of prime order is
 - (i) I
 - (ii) 2
 - (m) 3
 - (w) 4
- The number of edges in a bipartite graph with n vertices is at most
 - (i) $\frac{n^2}{2}$
 - $\int \mathcal{W} \frac{n^2}{4}$
 - (iii) n^2
 - fiv) 2n
- The number of pendant vertices of a full-binary tree is

 - (ii) $\frac{n-1}{2}$
 - $\lim_{n\to\infty}\frac{2n+1}{2}$
 - (n) $\frac{2n-1}{2}$

- 2. (a) Using truth table, show that-
 - (i) $((p \rightarrow (q \rightarrow r))) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$ is a tautology;
 - (ii) $\neg (q \rightarrow r) \land r \land (p \rightarrow q)$ is a contradiction.
 - (b) Obtain the principal disjunctive normal form (PDNF) and principal conjunctive normal form (PCNF) of the statement (p → (q ∧ r)) ∧ (~ p → (~ q ∧ ~ r)). 7+7=14
- 3. (a) For any sets A and B, prove that
 - (i) $(A \cup B)' = A' \cap B'$;
 - (ii) $(A \cap B)' = A' \cup B'$.
 - (b) If two sets A and B have n elements in common, then show that the sets A×B and B×A will have 2ⁿ elements in common. 7+7=14
- 4. (a) If R is the relation on the set of positive integers, such that $(a, b) \in R$ if and only if $a^2 + b$ is even, prove that R is an equivalence relation.
 - (b) Define partition of a set. If the relation R on the set of integers Z is defined by aRb iff $a \equiv b \pmod{4}$, find the partition induced by R.

5. (a) If R and S be relations on $A = \{1, 2, 3\}$ represented by the matrices

$$M_{S} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } M_{S} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

find the matrices that represent (i) $R \cup S$, (ii) $R \cap S$, (iii) $R \circ S$, (iv) R - S, (v) R', (vi) $R \circ R$ and (vii) $R \oplus S$.

- (b) Draw the Hasse diagram representing the partial ordering {(A, B}: A ⊆ B} on the power set P(S), where S = {a, b, c}. Find the maximal, minimal, greatest and least elements of the poset. 7+7=14
- 6. (a) Define characteristic function of a set. If A and B are any two subsets of universal set U, then show that—

$$f_{A \cap B}(x) = f_A(x) + f_B(x) - f_{A \cap B}(x),$$
for all $x \in U$

(b) If functions $f, g, h: Z \to Z$ are defined

$$f(x) = x - 1, \ g(x) = 3x \text{ and}$$

$$h(x) = \begin{cases} 0, & \text{if } x \text{ is even} \\ 1, & \text{if } x \text{ is odd} \end{cases}$$

Verify that $f \circ (g \circ h) = (f \circ g) \circ h$. 7+7=14

- 7. (a) Show that every group of order 3 is cyclic.
 - (b) Prove that the necessary and sufficient condition for a non-empty set H of a group (G, *) to be a subgroup is $a, b \in H \Rightarrow a * b^{-1} \in H$. 7+7=14
- 8. (a) Show that the order of a subgroup of a finite group is a divisor of the order of the group.
 - (b) Prove that the set S of all real numbers of the form $a+b\sqrt{2}$, where a, b are integers is an integral domain with respect to usual addition and multiplication. 7+7=14
- (a) Define adjacency matrix and incidence matrix of graph G. Draw the graph represented by the adjacency matrix

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

(b) Show that a tree with n vertices has (n-1) edges. 7+7=14

**