Code: 211303

B.Tech 3rd Semester Exam., 2017

MATHEMATICS-III

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **MINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct option (any seven):

(a) If P_n is the Legendre polynomial of first kind, then the value of

$$\int_{-1}^{1} P_{n+1}^2 dx$$

is

(i)
$$\frac{2}{(2n+1)}$$
 \sqrt{n} $\frac{2}{(2n+2)}$

(iii)
$$\frac{2}{(2n+3)}$$
 (iv) $\frac{2}{(2n+4)}$

(b) If J_n is the Bessel's function of first kind, then the value of $J_{\frac{3}{2}}$ is

$$\chi$$
 (i) $\sqrt{\frac{2}{\pi x}} \left(\frac{\cos x}{x} - \sin x \right)$

(fi)
$$\sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$$

(iii)
$$\sqrt{\frac{2}{\pi x}} \sin x$$

(iv)
$$\sqrt{\frac{2}{\pi x}}\cos x$$

(c) The general solution of

$$\frac{d^2y}{dx^2} + 9y = \sin^3 x$$

is

$$y = A\cos(3x + B) + \frac{1}{24}\sin x - \sin 3x$$

(ii)
$$y = Ae^{3x} + Be^{-3x} + \frac{1}{32}\sin x + \frac{1}{2}\cos 3x$$

(iii)
$$y = A + Be^{3x} + 2\sin x - \frac{5}{13}\sin 3x$$

(iv)
$$y = A \sin(3x + B) + \frac{3}{32} \sin x + \frac{x}{24} \cos 3x$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

(3)

$$\iiint u = f(x + iy) + g(x - iy)$$

$$\sqrt{(ii)} \quad u = f(x+y) + g(x-y)$$
(iii)
$$u = cf(x-iy)$$

(iii)
$$u = cf(x - iy)$$

(iv)
$$u = cg(x + iy)$$

- The Fourier series of the periodic function $f(x) = x + x^2$, $-\pi < x \le \pi$ at $x = \pi$ converges to
 - (i) π
 - (ii) 2π
 - (iii) π^2
 - (iv) $\pi + \pi^2$
- The radius of convergence of the series

$$\sum_{n=0}^{\infty} (3+4i)^n z^n$$

is

- (i)5
- (ii) 1/5
- (iii) 3+4i
- (iv) None of the above

The value of the integral

$$\oint_{|z|} 2 \frac{e^{2z}}{(z+1)^4} dz$$

is

- (i) $2\pi i e^{-1}$
- $\int dt \frac{8\pi i}{3}e^{-2}$
- (iii) $\frac{2\pi i}{2}e^{-2}$
- (iv) 0
- (h) Let A, B and C be any three independent events. Which one of the following is incorrect?
 - (i) P(A/B) = P(A)
 - (ii) $P(B_A) = P(B)$
 - (iii) $P(A \cap B) = P(A) P(B)$ (iv) $P(A \cup B) = P(A) + P(B)$
- A random variable X has a Poisson distribution. If

$$4\{P(X=2)\} = \{P(X=1) + P(X=0)\}$$

then the variance of X is

- (i) 3
- (ii) 2
- (iii) 1
- (iv) 4

The moment-generating function of a continuous random variable X be given as

$$M_X(t) = (1-t)^{-9} |t| < 1$$

then its mean and variance are

(iv)
$$(1/9, 1/9)$$

- 2 State and prove Rodrigues' formula. 14
- 3. If $u v = (x y)(x^2 + 4xy + y^2)$ and f(z) = u + ivis an analytic function of z = x + iy, then find 14 f(z) in terms of z.
- 4. Evaluate

$$\int_0^\infty \frac{\sin{(mx)}}{x(x^2+a^2)} dx$$

- by Contour integration. 14
- 5. Classify and reduce the equation given below into normal form and find its solution. 14

$$xy\left(\frac{\partial^2 z}{\partial y^2} - \frac{\partial^2 z}{\partial x^2}\right) + (x^2 - y^2)\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial x}y - \frac{\partial z}{\partial y}x + 2(x^4 + y^4)$$

- 6. Show that the solution of the heat equation $u_t = u_{xx}$ satisfying the conditions
 - $u \rightarrow 0$, as $t \rightarrow \infty$
 - u=0, when $x=\pm a \ \forall \text{ values of } t>0$
 - (iii) u = x, when t = 0 and $-a < x < a \ \forall$ values of t > 0

is

$$u = \frac{2a}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin\left(\frac{n\pi x}{a}\right) e^{\frac{-n^2 \pi^2}{a^2}} t$$

- 7. (a) If A, B and C are independent events, show that A and $B \cup \overline{C}$ are also independent.
 - Urn I contains 2 white and 3 black balls, Urn II contains 4 white and 1 black balls and Urn III contains 3 white and 4 black balls. An Urn is selected at random and a ball drawn at random is found to be white. What is the probability that Urn I was selected?

7+7=14

14

The incidence of occupational disease in **8.** (a) an industry is such that the workers have a 25% chance of suffering from it. What is the probability that out of 13 workers chosen at random, six or more will suffer from the disease?

(b) In a distribution exactly normal, 7% of the items are under 35 and 89% items are under 63. What are the mean and standard deviation of the distribution? It is given that

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-\frac{x^2}{2}} dx$$

then f(1.230) = 0.39, f(1.475) = 0.43.

9 A random variable X has the density function

$$f(x) = \begin{cases} cx^2, & 1 \le x \le 2\\ cx, & 2 < x < 3\\ 0, & \text{otherwise} \end{cases}$$

Find-

- (i) the constant c
- (ii) P(1 < x < 2)
- (iii) $P(x \ge 3)$
- (iv) P(x < 1)
- (v) E(2X)
- (vi) Var(X-3)
- (vii) E(2X+4)

 $2 \times 7 = 14$
