2)

Code: PCC-EEE-05 (100308)

B.Tech 3rd Semester Special Exam., 2020

ELECTROMAGNETIC FIELDS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following $2 \times 7 = 14$ (any seven):
 - (a) In a transmission line, the electrical energy is transported by the
 - flowing of electrons
 - flowing of electrons and holes
 - associated electric and magnetic field
 - None of the above (iv)

(Turn Over)

- A theorem which relates a line integral with surface integral is called
 - Gauss divergence theorem
 - Stokes' theorem
 - Maxwell's theorem
 - (iv) Poisson's theorem
- If the curl of the magnetic field is $2.0a_X$ A/m², the current density is
 - (i) $2.0a_X A/m^2$
 - (ii) $1.0a_x A/m^2$
 - (iii) 2.0 A/m
 - (iv) $1.0a_x A/m$
- The example of polar type of dielectric is
 - (i)oxygen
 - water
 - hydrogen
 - nitrogen

- (e) If $\mu = 1.0 \mu H/m$ for a medium, H = 2.0 A/m, the energy stored in the field is
 - (4 0.5 J/m3
 - (ii) 1.0 µJ/m³
 - (iii) 2-0 µJ/m³
 - (iv) 1.0 J/m³
- (f) The wavelength of a wave with a propagation constant $= 0.1\pi + j0.2\pi$ is
 - (v) 30 m
 - (ii) 20 m
 - (iii) 5 m
 - (iv) 10 m
- (g) Suppose the potential function is a step function. The equation that gets satisfied is
 - (i) Laplace equation
 - (ii) Poisson equation
 - (iii) Maxwell equation
 - (iv) Ampere equation

(h) Find the magnetic flux density when a point from a finite current length element of current 0-5 A and radius 100 nm.

- Ø O
- (ii) 0.5
- (iii) 1
- (iv) 2
- (i) The electric field intensity of a field with velocity 10 m/s and flux density of 2.8 units is
 - *(i)* 0.28
 - (前 28
 - (前) 280
 - (iv) 10/2·8
- (i) The vectors (-2, 1,-1) and (0, 3, 1) are
 - (i) parallel
 - (ii) collinearly parallel
 - (iii) not parallel
 - (iv) Data insufficient

2. 191	Find the projection between use following two vectors:	6
	$P = 4\overline{a}_y + 10\overline{a}_z$ $\overline{Q} = 2\overline{a}_x + 3\overline{a}_y$	
√ ^(b)	Discuss the Stokes' theorem and its applications.	4
Cor	Explain the Cartesian coordinate system and different elements in Cartesian coordinate system.	4
3. (a)	Eight 25 nC point charges in free space are located symmetrically on a circle of radius 0.2 m centered at the origin in the z=0 plane. (i) At what point on the z-axis is the electric field intensity E maximum? (ii) What is the magnitude of maximum field intensity E?	6
(ъ)	Obtain an expression for total force experienced by a point charge due to infinite number of point charges around it.	. 4
(c)	A ring of radius 6 m is placed in yz plane. It is centered at origin. Find electric field intensity at point (8, 0, 0) m. The line charge density is 18 nC/m.	4

20AK/1295

4. 19 Derive dielectric-dielectric boundary conditions.

- b) The electric field intensity in polystyrene e, = 2.55 filling the space between the plates of a parallel plate capacitor is 10 kV/m. The distance between the plates is 1.5 mm. Calculate
 - the surface charge density of free charge on the plates;
 - (ii) the potential difference between the plates.

Discuss the boundary condition for electric field.

Use Laplace's equation to find the capacitance per unit length of a coaxial cable of inner radius a m and outer radius b m. Assume $V = V_0$ at r = a and V = 0 at r = b.

(b) State and explain Ampere's circuital law in integral form.

carrying a current I, the magnetic field strength at a distance r from the centre of the wire is given by

$$\overline{H} = \frac{lr}{2\pi R^2}$$

where R is the radius of the wire. The current density is constant across the cross-section of the conductor.

- 6. (a) An air-core toroid with rectangular cross-section has 700 turns, with inner radius of 1 cm and outer radius of 2 cm and height is 1-5 cm. Find inductance of the toroid circuit.
 - (b) Discuss the energy stored in electric and magnetic fields.

6

- (c) Establish the boundary conditions for the tangential component of H at the boundary between two isotropic, homogeneous materials with permeabilities µ₁ and µ₂.
- (a) Write Maxwell's equations for vacuum and derive the wave equation for the electric and magnetic fields in vacuum.
 - (b) For the copper coaxial cable of inner conductor of radius a = 2 mm and outer conductor of inner radius b = 6 mm and thickness t = 1 mm, calculate the resistance of 2 m length of the cable at DC and at 100 MHz.

Sketch the input impedance offered by short circuited and open circuited transmission lines. Derive the expressions used.

1 Turn Over 1

(b) Discuss the principle of any one method for matching transmission line with characteristic impedance.

(s. (a)

What is Smith chart? Explain the characteristics of Smith chart.

6

8

- (b) Define the following terms: 6
 - (i) Reflection coefficient
 - (ii) Transmission coefficient
 - (iii) Standing wave ratio

* * *