Code: 101304

B.Tech 3rd Semester Exam., 2020 (New Course)

ENGINEERING MECHANICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **MINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following (any seven): 2×7=14
 - (a) The moment of inertia of a thin spherical shell of mass m and radius r, about its diameter is
 - (i) $mr^2/3$
 - (ii) 2mr²/3
 - (iii) 2mr²/5
 - (iv) $3mr^2/5$

- (b) The CG of a plane lamina will not be at its geometrical centre in the case of a/an
 - (i) right-angled triangle
 - (ii) equilateral triangle
 - (iii) square
 - (iv) circle
- (c) Pick up wrong statement about friction force for dry surfaces. Friction force is
 - (i) proportional to normal load between the surfaces
 - (ii) dependent on the materials of contact surface
 - (iii) proportional to velocity of sliding
 - (iv) independent of the area of contact surfaces
- (d) If the body is in equilibrium, but it having a rotational curled ray shown in the free body diagram, then
 - (i) the diagram is wrong
 - (ii) such rotations cannot be shown in the free body diagrams
 - (iii) the ray shown may be correct, but the body is not said to be in equilibrium
 - (iy) the body is said to be in equilibrium only, as the other forces will cancel out that rotation

- (e) Potential energy is stored in the body if some work is done on it. Work done is best given by
 - (i) $dU = Fdr \cos \theta$
 - (ii) $dU = Fdr \sin \theta$
 - (iii) $dU = Fdr \cot \theta$
 - (iv) $dU = Fdrd\theta$
- (f) In a roof supporting truss, the load is transmitted when https://www.akubihar.com
 - first to the truss then the joints through purlins
 - (ii) first to the purlins then the joints through trusses
 - (iii) first to the truss then the purlins through joints
 - (iv) first to the joints then the trusses through purlins
- (g) Continuous beams are
 - (i) statically determinate beams
 - (ii) statically indeterminate beams
 - (iii) statically gravity beams
 - (iv) framed beams

- (h) Which of the following methods will give an incorrect relation of the frequency for free vibration?
 - (i) Equilibrium method
 - (ii) Energy method
 - (iii) Rayleigh's method
 - (iy) Klein's method
- (i) What is the effect on the undamped natural frequency of a singledegree-of-freedom system if the mass of the system is increased?
 - (i) The frequency will increase
 - (ii) The frequency will stay the same
 - (jii) The frequency will decrease
 - (iv) None of the above
- (j) D'Alembert's principle is used for
 - (i) reducing the problem of kinetics to equivalent statics problem
 - (ii) determining stresses in the truss
 - (iii) stability of floating bodies
 - (iv) designing safe structures
- 2. (a) State and explain D'Alembert's principle. Also discuss its application in plain motion.

6

(b) Replace the loading on the frame shown in Fig. 1 by a single resultant force:

Specify where its line of action intersects a horizontal line along member AB, measured from end A.

3. The narrow ring of mass m is free to rotate in the vertical plane about O as shown in Fig. 2:

If the ring is released from rest at $\theta = 0^{\circ}$, determine the expression for the n and t components of the force at O in terms of θ .

4. What is a truss? Determine the force in terms of the load P for each member of the truss shown in Fig. 3 and state if the members are in tension or compression:

- 5. (a) What is dry friction? Explain the characteristics of dry friction.
 - (b) Beam AB is subjected to a uniform load of 200 N/m and is supported by B at post BC, as shown in Fig. 4:

If the coefficients of static friction at B and C are $\mu_B = 0.2$ and $\mu_C = 0.5$, determine the force P needed to pull the post out from the beam. Neglect the weight of the members and the thickness of the beam.

AK-21/204

14

6

8

6. Determine the location of the centroid of the channel's cross-section area and also calculate the moment of inertia of the area about the axis shown in Fig. 5:

250 mm 50 mm y y 50 mm Fig. 5

- 7. (a) What is virtual work? Explain the principle of virtual work for particle. 6
 - (b) Determine the required force P in Fig. 6 needed to maintain equilibrium of the scissors linkage when $\theta = 60^{\circ}$:

The spring is upstretched when $\theta = 60^{\circ}$. Neglect the mass of the links.

8

14

/ Turn Over)

8. (a) What is direct central impact? Derive the expression for coefficient of restitution in case of direct central impact.

The 4 kg ball and the attached light rod rotate in the vertical plane about the fixed axis at O as shown in Fig. 7:

Fig. 7

If the assembly is released from rest at $\theta = 0$ and moves under the action of the 60 N force, which is maintained normal to the rod, determine the velocity v of the ball as θ approaches 90°. Treat the ball as a particle.

 (a) When a 3 kg collar is placed upon the pan which is attached to the spring of unknown constant,

AK-21/204

(Continued)

8

AK-21/204

the additional static deflection of the pan is observed to be 40 mm as shown in Fig. 8:

Fig. 8

Determine the spring constant k in N/m.

6

(b) Derive the expression of natural frequency and amplitude for free longitudinal vibration using Rayleigh's method.

8