B.Tech 5th Semester Exam., 2020 (New Course)

FORMAL LANGUAGES AND AUTOMATA THEORY

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following (any seven): 2×7=14
 - (a) Definition of a language L with alphabet $\{a\}$ is given as

 $L = \{a^{nk} | k > 0, \text{ and } n \text{ is a positive integer constant}\}$

What is the minimum number of states needed in a DFA to recognize L?

- (i) k+1
- (ii) n+1
- (iii) 2^{n+1}
- (iv) 2^{k+1}

(b) Which of the following versions of Unix came up with YACC first?

49 V3

- (ü) V5
- (iii) CB UNIX
- (iv) UNIX-RT
- (c) A pushdown automata can be represented as PDA = ε-NFA + [stack].
 - √ir True
 - (ii) False
- (d) A language accepted by deterministic pushdown automata is closed under which of the following?
 - (i) Complement
 - (ij) Union
 - (iii) Both (i) and (ii)
 - (iv) None of the above
- (e) A ____ is context free grammar with atmost one non-terminal in the right handside of the production.
 - (i) linear grammar
 - (ii) linear bounded grammar
 - (iii) regular grammar
 - (iv) None of the above

- (f) The lexical analysis for a modern language such as Java needs the power of which one of the following machine models in a necessary and sufficient sense?
 - (i) Finite state automata
 - (ii) Deterministic pushdown automata
 - (iii) Non-deterministic pushdown automata
 - (io) Turing machine
- (g) Let L = {w\in (0+1)* | w has even number of 1s}, i.e., L is the set of all bit strings with even number of 1s. Which one of the regular expression below represents L?
 - (i) (0* 10* 1)*
 - (ii) 0* (10* 10*)*
 - (iii) 0* (10* 1*)* 0*
 - (iv) 0° 1(10° 1)° 10°
- (h) What is the minimum number of states in deterministic finite automata (DFA) for string starting with ba² and ending with a over alphabet {a, b}?
 - (i) Ten
 - (ii) Nine
 - (iii) Eight
 - (ju/ Six

- (i) The decision problem is the function from string to _____.
 - (i) char
 - (ii) int
 - (iii) boolean
 - (iv) None of the above
- A language L may not be accepted by a turing machine if
 - (i) it is recursively enumerable
 - (ii) it is recursive
 - (iii) L can be enumerated by some turing machine
 - (iv) None of the above
- (a) Write the context-free grammar to create palindrome over (a, b).
 - (b) Construct a DFA which accepts the set of all binary strings that interpreted as binary representation of an unsigned decimal integer, is divisible by 5. 7+7=14
- (a) Design a turing machine to compute the sum of two positive integers m and n.
 - (b) Design ANPDA for accepting the string L = {set of all palindrome over (a, b)} by the empty stack and by final state.

7+7=14

4. (a) Construct finite automaton corresponding to the regular expression:

- (b) Explain the multi-tape version of turing machine and its significance. 7+7=14
- 5. (a) Show given grammar over alphabet {a, b} verify whether it is ambiguous or unambiguous :

$$S \rightarrow a/abSb/aAb$$

 $A \rightarrow bS/aAAb$

- (b) Show that $L = \text{palindrome over } \{a, b\}$ is not regular. 7+7=14
- 6. (a) Prove that if L is generated by a CFG, then L is accepted by a nondeterministic PDA by empty stack.
 - (b) Design a pushdown automaton for the following context-free grammar: 7+7=14

$$S \rightarrow aB \mid bA$$

 $A \rightarrow aS|bAA|a$

 $B \rightarrow bS|aBB|b$

7. (a) Design a turing machine that accepts all palindromes over $\sum = \{a, b\}$.

- (b) Explain Myhill-Nerode theorem for minimization of automata with suitable example. 7+7=14
- 8. (a) Prove that if L is the language generated by an unrestricted grammar G = (N, T, P, S), then L is recognized by a turing machine.
 - (b) Design a pushdown automata for accepting the string for the language $L = \{WW^R \mid W \in (a, b)^*\}$ by the empty stack as well as final state. 7+7=14
- **9.** Write short notes on the following: $3\frac{1}{2} \times 4 = 14$
 - (a) Minimization of automata
 - (b) Type 2 grammar (write fiee)
 - (c) NP-hard problem
 - (d) Pumping lemma for CFL

* * *