(2)

Code: 303102

BCA 1st Semester Exam., 2021

BASIC MATHEMATICS

Time: 3 hours Full Marks: 60

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are SEVEN questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question Nos. 1 and 2 are compulsory.
- 1. Choose the correct answer (any six): 2×6=12
 - (a) If x and y are real numbers, then the value of

 $\max(x, y) + \min(x, y)$

is

(i) x

(ii) y

∠iii) x/y

(iv) None of the above

(Turn Over)

- (b) Let A = [-2]. Then det (A), i.e., |A| is
 - fi) 2
 - (ü) 1
 - (iii) 0
 - (iv) None of the above
- (c) For a set A, the power set of A is denoted by 2^A . If $A = \{5, \{6\}, \{7\}\}\$, which of the following are true?
 - 1. $\emptyset \in 2^A$
 - 2. $\emptyset \subseteq 2^A$
 - 3. $\{5, (6)\} \in 2^A$
 - 4. $\{5, (6)\} \subseteq 2^A$
 - $_{-}(i)$ 1 and 3 only
 - (ii) 2 and 3 only
 - (iii) 1, 2 and 3 only
 - (iv) 1, 2 and 4 only
- (d) The number of positive integers lying between 1 and 100 (both inclusive) and not divisible by 2, 3 and 5 is
 - (i) 30
 - (ii) 90
 - (iii) 95
 - (iv) None of the above

(e) If Mdx + Ndy = 0 has the form f(y)dx + g(x)dy = 0, the integrating factor is

- (i) 1/(Mx Ny)
- (ii) 1/(Mx + Ny)
- (iii) $1/((Mx-Ny)\neq 0)$
- (ii) None of the above

(f) In a set of people, the relation 'x is not older than y' satisfies which property?

- (i) Transitivity
- (ii) Reflexivity
- / fiii) Antisymmetric
- (iv) Symmetric

(g) The pair of equations x+2y+5=0 and -3x-6y+1=0 has

- (i) a unique solution
- (ii) exactly two solutions
- (iii) infinitely many solutions

(iv) no solution

- The propositional statement $(P \to (Q \lor R)) \to ((P \land Q) \to R)$ is
 - (i) satisfiable but not valid
 - (ii) valid
 - (iii) a contradiction
 - (iv) None of the above

(i) In an examination, a student scores 4 marks for every correct answer and loses 1 mark for every wrong answer. If he attempts all 75 questions and secures 125 marks, the number of questions he attempted correctly is

- (i) 35
- _(ii) 40
- (iii) 42
- (iv) 46

(j) If f(x) + f(1-x) = 1, then f(1/1997) + f(2/1997) + ... + f(1996/1997)is

- (i) 999
- (ii) 998
- (iii) 919
- (iv) 918

(6)

- **2.** Answer any three of the following: $4\times3=12$
 - (a) One kind of bacteria y grows according to the equation $\frac{dy}{dt} = ky$, where k is a constant and t is measured in years. If the amount of the bacteria doubles every 5 days, then find the value of k.
 - (b) Let A and B be sets and let A^c and B^c denote the complements of the sets A and B. Simplify the expression

$$(A-B)\cup (B-A)\cup (A\cap B)$$

- (c) Let $A = \{1, 2, 3, 4\}$. Make the relation (R) over $A \times A$ as $R = \{(a, b) \mid a+b>2 \text{ and } a, b \in A\}$. Is it transitive?
- (d) Check whether $a \lor b \to b \land c$ is tautology or not.
- (e) Find the value of $\int_0^3 e^x dx$.
- 3. Find the value of the integral

$$\int_0^6 \frac{1}{1+x^2} dx$$
 12

4. Find the number of subsets of {1, 2, ..., n}with odd cardinality.

5. If $x = t^2 - 1$ and $y = 2e^t$, then find $\frac{dy}{dx}$.

6. Find the area enclosed by the curve y = f(x) defined parametrically as

$$x = \frac{1 - t^2}{1 + t^2}, \quad y = \frac{2t}{1 + t^2}$$

7. Find the fourth derivative of $x^3 \log x$ with respect to x, using Leibnitz theorem. 12
