masterranjeet.com

Code: 011620

B.Tech 6th Semester Exam., 2018

DESIGN OF STEEL STRUCTURE

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following $2 \times 7 = 14$ (any seven):
 - (a) In plastic analysis, the shape factor for circular sections is
 - (i) 1.5
 - (ii) 1·6
 - (iii) 1.697
 - (iv) None of the above
 - A beam is defined as a structural member subjected to
 - (i) axial loading
 - (iii) transverse loading
 - (iii) axial and transverse loading
 - (iv) None of the above

The failure of a web plate takes place by yielding if the ratio of the clear depth to thickness of the web is less than

(i) 45

(ii) 55

(iii) 60

(iv) 82

- The most economical section for a column is
 - (i) rectangular
 - (ii) solid round
 - (iii) flat strip
 - (iv) tubular section
- distance between e.g. compression and e.g. of tension flanges of a plate girder is known as
 - (i) overall depth
 - (ii) clear depth
 - √iii) effective depth
 - (iv) None of the above
- The allowable stress, in axial tension for rolled I-sections and channels, is taken as

(i) 1420 kg/cm^2 (ii) 1500 kg/cm^2

(iii) 2125 kg/cm² (iv) 1810 kg/cm²

(g)	If d is the distance between the flange
	angles, the vertical stiffeners in plate
	girders are spaced not greater than

- (i) d
- (ii) 1.25d
- (iii) 1·5d
- (iv) 1.75d
- (h) The cross-section of a standard fillet is a triangle whose base angles are
 - (i) 45° and 45°
 - (ii) 30° and 60°
 - (iii) 40° and 50°
 - (iv) 20° and 70°
- (i) A second horizontal stiffener is always placed at the neutral axis of the girder if the thickness of the web is less than
 - (i) d/250 for structural steel
 - (ii) d/225 for high tensile steel
 - (iii) Both (i) and (ii)
 - (iv) Neither (i) nor (ii)

j)	The	thickne	ess t	of	а	single	flat	lacing
	shou	ld not	he le	229	th	an		

- (i) 1/30th length between inner end rivets
- (ii) 1/40th length between inner end rivets
- (iii) 1/50th length between inner end rivets
- (iv) 1/60th length between inner end rivets
- 2. Explain the following:

14

- (a) Local and lateral buckling of beam
- (b) Checks required for beam design
- 3. Calculate the design compressive load for a column made up of ISHB 350 @ 710·2 N/m and 3·5 m high. The column is restrained in direction and position at both the ends. Use steel of grade Fe 410.

14

4. Design a simply supported beam of span 4·2 m carrying reinforce concrete floor in which top compression flange is embedded. Beam is carrying 20 kN/m dead load and 20 kN/m imposed load, resume Fe 410 grade steel.

14

5.	Design a suitable angle section to carry tensile force of 250 kN. Use welded connection.	14				
6.	Discuss the following:					
	(a) Prying action					
	(b) Advantage of fillet weld over butt weld					
	(c) Comparison of welded joints with bolted joints					
<u></u>	(a) Explain some of the common defects in the welds.	7				
	(b) Write the advantage of welded joints over bolted joints.	7				
8.	Design a tension member to carry a pull of 830 kN. The member is 3.2 m between c/c of intersections. Design the member using channel section.					
.9.	A tie member of truss consists of double angle section each 80 mm × 80 mm × 8 mm welded on the opposite side of a 12 mm thick gusset plate. Design a fillet weld for making connection in the workshop. The factored tensile force in the member is 300 kN.	14				
	500 KIV.	14				

Code: 011620