Code: 221101

B.Tech 1st Semester Exam., 2017

PHYSICS

Time . 3 hours

Full Marks: 70

Instructions:

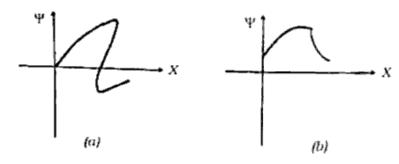
- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iii) Question No. 1 is compulsory.
- (v) Symbols used (if any) have their usual meaning.
- 1. Answer any scren questions: 2×7=14
- (a) Write down Maxwell's equations in integral forms.
 - (b) Define Gauss' law in dielectrics.
 - (c) Write down the expression for the resultant intensity due to double-slit Fraunhofer diffraction.
 - (d) What do you mean by stimulated emission of radiation?
 - (c) Define Brewster's law.
 - (f) What do you mean by circularly polarized light?

- (g) What is the physical significance of
- wave function?
- (h) Write down Schrödinger's time
 dependent wave equation in one dimension.
- State fundamental postulates of the special theory of relativity.
- Write down any two properties of carbon
 nanotubes.
- (a) What are nanomaterials? List the methods used to prepare nanomaterials. Describe any one method used for the synthesis of nanomaterials.
 - (b) What is Compton effect? Derive an expression for Compton wavelength. 2+4=6
- What do you mean by population inversion? How is it achieved by optical pumping? Describe the construction and working principle of helium-neon laser. 2+2+10=14
- Describe Michelson-Morley experiment with the help of neat diagram. Derive an expression for the fringe shift in Michelson-Morley experiment. Discuss its negative result. 5+5+4=14

- Using Maxwell's equations, deduce the equation of continuity. Also prove that electromagnetic waves travel with the speed of light in vacuum.
- 6. Solve the Schrödinger's wave equation for one-dimensional motion of a particle in a box of length L. Also show that the normalized wave function for such particle is given by

$$\Psi_n = \sqrt{\frac{2}{L}} \sin \frac{m\pi x}{L},$$

where n = 1, 2, 3, ...


10+4=14

- 7. Write short notes on the following: 5+5+4*14
 - (a) Missing orders in Fraunhofer's doubleslit diffraction pattern
 - (b) Fraunhofer's diffraction pattern in single-slit (Derivation not required)
 - (c) Effect of increasing the slit width and the distance between the double-slit Fraunhofer's diffraction pattern
- 8. Explain plane of polarization and plane of vibration. Describe how, plane polarized, circularly polarized and elliptically polarized lights are produced and detected. 4+10=14

- 9. (a) A metre stick makes an angle of 30° with respect to the x axis of O. What must be the value of velocity (v) if the metre stick makes an angle of 45° with respect to the x-axis of O?
 - (b) Which of the following cannot have physical significance in the interval shown? Why not?

6

Code: 221101

(c) Find the stored energy in a system of four identical charges Q = 4 nC, at the corners of a square 1 m on a side. What is the stored energy in the system when only two charges are in place? 3+1=4

* * *