Code: 051506

B.Tech 5th Semester Exam., 2019

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **MINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer from any seven of the following: 2×7=14
 - (a) In the following C++ function, let n>=m. int gcd(int n, int m) {
 if (n%m==0) return m;
 if (n<m) swap (n, m);
 while (m > 0) {
 n=n%m;
 swap (n, m);

return n;

What is the time complexity of the above function assuming n > m?

- (i) Θ(logn)
- (ii) Ω(n)
- (iii) Θ(loglogn)
- (iv) $\Theta(\operatorname{sqrt}(n))$

20AK/356

(Turn Over)

(b) Time complexity of Kadane's Algorithm is

ji) O(n)

- (ii) O(n^2) :
- (iii) O(nlogn)
- (iv) $O(n(\log n) \wedge 2)$
- (c) Consider an undirected random graph of eight vertices. The probability that there is an edge between a pair of vertices is ½. What is the expected number of unordered cycles of length three?
 - (i) 1/8
 - (ii) 1

(111)

- (iv) 8
- (d) Any decision tree that sorts 'n' elements has height
 - (i) $\Omega(\lg n)$
 - (ii) Ω(n)

(iii) $\Omega(n \lg n)$

(iv) $\Omega(n^2)$

- (e) An all-pairs shortest-paths problem is efficiently solved using
 - (i) Dijkstra's algorithm
 - (ii) Bellman-Ford algorithm
 - (iii) Kruskal algorithm
 - (iv) Floyd-Warshall algorithm
- (f) Which of the following is an advantage of adjacency list representation over adjacency matrix representation of a graph?
 - (i) In adjacency list representation, space is saved for sparse graphs.
 - (ii) DFS and BFS can be done in O(V+E) time for adjacency list representation. These operations take O(V∧2) time in adjacency matrix representation. Here V and E are number of vertices and edges respectively.
 - (iii) Adding a vertex in adjacency list representation is easier than adjacency matrix representation.
 - (iv) All of the above

- (g) Which of the following is true about Huffman Coding?
 - (i) Huffman coding may become lossy in some cases.
 - (ii) Huffman codes may not be optimal lossless codes in some cases.
 - (iii) In Huffman coding, no code is prefix of any other code.
 - (iv) All of the above
- (h) Which one of the following is an application of Queue Data Structure?
 - (i) When a resource is shared among multiple consumers
 - (ii) When data is transferred asynchronously (data not necessarily received at same rate as sent) between two processes
 - (iii) Load balancing
 - (iv) All of the above

(i)	In	linear	search	algorithm	the	worst
	case occurs when					

- (i) the item is somewhere in the middle of the array
- (ii) the item is not in the array at all
- (iii) the item is the last element in the array
- (iv) the item is the last element in the array or is not there at all
- (j) The complexity of binary search algorithm is
 - (i) O(n)
 - -(ii) O(log n)
 - (iii) O(n²)
 - (iv) O(n log n)
- 2. (a) Discuss the steps in mathematical analysis for recursive algorithm. Do the same for finding the factorial of a number?
 - (b) What are the rules of manipulate Big-Oh expression? Write about the typical growth rates of algorithms.

What are the advantages of merge-sort over the quick-sort algorithm?

- (b) What is the time complexity of the matrix multiplication and Strassen's algorithm?
- **4.** Prove that if f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) + f2(n) = O(g1(n) + g2(n)).
- 5. (a) What is the relationship among P, NP and NP complete problems? Show with the help of a diagram.
 - (b) Compare the various programming paradigms such as divide-and -conquer, dynamic programming and greedy approach.
- 6. Consider the array A = {26, 17, 41, 14, 21, 30, 47, 10, 16, 19, 21, 28, 38, 7, 12, 14, 20, 35, 39, 3}. Create binary search tree with one more attributes its size of node. Retrieve 17th smallest element in the tree and rank the 12th element.

(Turn Over)

7

7

7

7

What do you mean by optimal solution in greedy approach? Define the properties and function of greedy approach. Consider the graph G = (V, E) given below. Find the minimum spanning tree by Prim's algorithms.

14

8. Explain back-tracking. DFS and BFS with help of small example. Differentiate in between backtracking and dynamic programming. Apply the backtracking algorithm to solve the three-colouring problem for the following graph using state space tree. Assume three colours red, green and blue.

14

Write short notes on :

31/2×4=14

- (a) Kruskal algorithms
- (b) Branch and bound technique
- (c) Amortized analysis .
- (d) Divide-N-Conquer vs Dynamic Programming
