Code: 231101

B.Tech 1st Semester Exam., 2017

ENGINEERING CHEMISTRY

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.

1, Fill in the blanks (any seven): 2×7=14

- (a) Temporary hardness is removed by boiling due to the reaction
- (b) The difference in HCV and LCV of fuel sample is equal to _____.
- (c) Calorific value of a gaseous fuel is determined by ____ calorimeter.
- (d) The colligative property depends on in solution and not on nature of solute.
- (e) In an electrochemical cell ____ energy gets converted into ____ energy.

(Turn Over)

- A copolymer is one which is made of more than one type of ____.
- (g) Polyacetylene doped with iodine is an example of _____ polymer.
- (h) According to electrochemical theory of corrosion, corrosion occurs at _____.
- (i) Low temperature carbonization yields coke which is suitable for _____.
- (i) In the determination of total hardness of water by EDTA method, the indicator employed is _____.
- 2. (a) Why do we add buffer solutions during titration of hard water by EDTA method?
 - (b) What is zeolite? Why zeolite softened water is unsuitable for use in boiler?

2

8

(c) A sample of water gives the following results on analysis:

$$CO_2 = 22 \text{ ppm, } HCO_3 = 365 \text{ ppm,}$$

 $Ca^{2+} = 40 \text{ ppm, } Mg^{2+} = 48 \text{ ppm}$

Calculate the amount of lime and soda that would be required to soften 10000 litres of water, if 139 ppm of FeSO₄. 7H₂O is used as coagulant.

(a) Explain caustic embrittlement in boiler.

How does it effect the boiler? How can this be prevented?

	(b)	Name the factors which are responsible for corrosion in boilers. How can this be minimised?
	(c)	Explain the function of the following in water treatment: 3+3
		(i) Calgon
		(ii) Bleaching powder
4.	(a)	What do you understand by the term low temperature carbonization?
	(b)	How is coke obtained by using Otto- Hofmann reactor? What are the advantages of using this reactor?
	(c)	Describe the indirect coal to liquid conversion process. Draw the diagram and give the reactions involved in this process.
5.	(a)	composition by volume: $H_2 = 14\%$, $CH_4 = 20\%$, $C_2H_6 = 26\%$, $C_2H_4 = 15\%$, $CO = 15\%$, $CO_2 = 5\%$, $N_2 = 5\%$ and $O_2 = 5\%$ Calculate—
		(i) minimum amount of air required for complete combustion of this fuel;
841	(/8	(Turn Over)

		(ii) percentage composition of dry products of combustion, if 10% excess air is supplied.
	<i>(b)</i>	What are polymers? Classify them on the basis of their thermal behaviour. Give suitable example.
6.	(a)	Explain isotactic and syndiotactic polymers.
	(b)	Write short notes on the following: 6 (i) Polymer degradation (ii) Glass transition temperature
	(c)	42 g of propene was polymerised by radical polymerisation process and \overline{DP} was found to be 1000. Calculate the number of molecules of PP produced.
7.	(a)	What do you mean by EMF of a cell? 4
	<i>(b)</i>	How is the EMF of a cell determined? 4
ŀ	(c)	An iron wire is immersed in a solution containing ZnSO ₄ and NiSO ₄ . The conc. of each salt is I M. Predict giving reasons, which of the
		following reactions is likely to proceed:
		(i) Iron reduces Zn ²⁺ ions (ii) Iron reduces Ni ²⁺ ions
8AK/8		(Continued)

Given:

$$E_{(Zn^{2*}/Zn)}^{e} = -0.76V$$

$$E_{(Fe^{3*}/Fe)}^{e} = -0.44V$$

$$E_{(Ni^{2*}/Ni)}^{e} = -0.25V$$

6

- 8. (a) Define corrosion. Why do metals corrode and what are the consequences of corrosion?
 - (b) Explain the Pilling-Bedworth rule, taking example.
 - (c) Write brief accounts of the following: 3+3
 - (i) Passivation
 - (ii) Stress corrosion
 - (a) Establish the relationship between osmotic pressure and lowering vapour pressure.

(b) Under what conditions the abnormal molecular weight values of solutes are obtained from the measurement of colligative properties?

O-5% aqueous solution of sucrose (MW = 342) at 27 °C. If the density of solution is 1.017 kg dm⁻³, calculate the height of the column of the solution in the solution of the solution in the solution of the solution in the

* * *

code: 231101