(2)

Depth of penetration in free space is

Code: 100308

## B.Tech 3rd Semester Exam., 2020 (New Course)

## ELECTROMAGNETIC FIELD THEORY

Time: 3 hours Full Marks: 70

## Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- (v) Symbols and notations carry their usual meanings.
- 1. Choose the correct answer of any seven of the following: 2×7=14
  - (a) In free space, the Poisson equation becomes
    - (i) Maxwell equation
    - (ii) Ampere equation
    - (iii) Laplace equation
    - (iv) steady-state equation
  - (b) Poisson equation can be derived from which of the following equations?
    - (i) Point form of Gauss law
    - (ii) Integral form of Gauss law
    - (iii) Point form of Ampere law
    - (iv) Integral form of Ampere law

5md ---

A) a

Poyntang vector gives the

for rate of energy flow

direction of polarization

full intensity of electric field

(tw) intensity of magnetic field

Using volume integral, which quantity can be calculated?

- fü Area of cube
- til Area of cuboid
- (m) Volume of cube
- ful Distance of vector

(f) Electric flux density in electric field is referred to as

- in number of flux lines
- ratio of flux lines crossing a surface and the surface area
- (iii) direction of flux at a point
- (iv) flux lines per unit area

AK-21/205

(Turn Over)

AK-21/205 (Continued)

- (g) Which of the following correctly states
  Gauss law?
  - (i) Electric flux is equal to charge
  - (ii) Electric flux per unit volume is equal to charge
  - (iii) Electric field is equal to charge density
  - (iv) Electric flux per unit volume is equal to volume charge density
- (h) Find the power reflected in a transmission line, when the reflection coefficient and input power are 0.45 and 18 V respectively.
  - (i) 3.645
  - (ii) 6·453
  - (iii) 4·563
  - (iv) 5.463
- (i) In a waveguide, which of the following conditions is true always?
  - (i) Phase velocity = c
  - (ii) Group velocity = c
  - (iii) Phase velocity > c
  - (iv) Phase velocity < c

- The phase and group velocities do not depend on which of the following?
  - Frequency
  - Mavelength
  - Phase constant
  - has Attenuation constant
- 2. Attempt any two parts of the following :

7×2-14

- dimensions of 3 cm × 2 cm operates at 10 GHz. Find
  - fij cut-off frequency  $(f_c)$ ;
  - (ii) cut-off wavelength  $(\lambda_c)$ ;
  - (iii) guided wavelength  $(\lambda_a)$ ;
  - (iv) phase constant  $(\beta_0)$ .
- (b) What do you mean by transmission line? Derive an expression for transmission line equations.
- (c) Determine the expression for average power of Poynting vector.

3. Attempt any two parts of the following:

 $7 \times 2 = 14$ 

Define quality factor. Give its relation with attenuation factor.

- (ii) Define reflection coefficient and ASWR. Also write their interrelation.
- (b) (i) Compare wave impedance and characteristic impedance.
  - (fi) Define tangent loss.
  - (c) Derive the field components when wave is propagating inside a rectangular waveguide with TM mode of propagation.

4. Attempt any two parts of the following:

 $7 \times 2 = 14$ 

(Turn Over)

- (a) Derive an expression for input impedance when transmission line is terminated with any load impedance.
- (b) What is equipotential surface? Explain Poynting vector and average Poynting vector.
- State and prove Ampere's work law as  $\nabla \times \vec{H} = J$ .

5. Attempt any two parts of the following:

 $7 \times 2 = 14$ 

- Derive the Gauss divergence theorem and Stokes' theorem along with their significances.
  - (b) Explain the wave between parallel planes. Derive the expression for the attenuation in parallel plane guide.
  - (c) Derive the expressions for the reflection and refraction of the waves by the perfect dielectric.
- 6. Attempt any two parts of the following:

 $7 \times 2 = 14$ 

- (a) Find the reflection and transmission coefficient for the interface between air and freshwater (ε = 8 lε<sub>0</sub>, σ ≡ 0) in the case of perpendicular incidence.
- (b) Derive the relationship between the following:
  - Standing-wave ratio and magnitude of reflection coefficient
  - (ii) Standing-wave ratio and the reflection coefficient
- (c) (i) Write the condition for a line to be distortionless.
  - (ii) Define the term 'phase velocity'.

7. Attempt any two parts of the following:

7×2≈14

- (a) What is polarization of wave? Discuss the properties of S- and P-polarized light. Explain why P-polarized light is also called as TM-polarized light.
- (b) Explain the term 'standing-wave ratio' related to transmission line. What will be the values of input impedances when output impedances are (i) open-circuited and (ii) short-circuited?
- (c) Explain why TEM wave does not propagate in waveguide.
- 8. Attempt any two parts of the following:

 $7 \times 2 = 14$ 

- (a) A transmission line has a characteristic impedance of 100 ohms and is terminated in a load impedance of 200+j180 ohms. Find the voltage reflection coefficient.
- (b) What is the penetration depth in current penetration in copper at a frequency of  $10^4$  MHz, if the resistivity is  $1.7 \times 10^{-6} \Omega$  cm?
- (c) What are the satisfactory conditions for low-loss transmission lines?

9. Attempt any two parts of the following:

7×2=14

Code: 100308

(a) A uniform plane wave propagating in a medium has  $E = 2e^{-\alpha z} \sin(10^8 t - \beta z)a_y$ . If the medium is characterized by  $\varepsilon_r = 1$ ,  $\mu_r = 20$  and  $\sigma = 3$  mhos/m, then find  $\alpha$ ,  $\beta$  and  $\vec{H}$ .

(b) In a non-magnetic medium

 $E = 4 \sin(2\pi \times 10^7 - 0.8x)a_z \text{ V/m}$ 

Find-

the time-average power carried by the wave;

the total power crossing 100 cm<sup>2</sup> of plane 2x + y = 5.

What is the boundary condition for metal dielectric interface?

\* \* \*