Code: 221201

B.Tech 2nd Semester Examination, 2017

Physics

Time: 3 hours		Full Marks: 70

Instructions:

- (i) There are Nine Questions in this Paper.
- (ii) Attempt Five questions in all:
- (iii) Question No. 1 is Compulsory.
- (iv) The marks are indicated in the right-hand margin.
- 1. (a) Write down Gauss law.

12×7

- (b) What is poynting theorem?
- (c) Draw the energy level diagram for He-Ne laser.
- (d) What do you mean by Rayleigh criterion?
- (e) Write a short note on magneto-elastic effect.
- (f) Briefly explain Einstein's photoelectric equation.
- (g) Briefly describe the Davisson-Germer experiment.
- (h) Explain briefly the concept of tunnelling in wave mechanics.
- (i) Write down the Lorentz transformation equations in relativity.
- (i) Briefly explain the importance of surface to volume ratio in nanotechnology.

D	-	ı	í	ì	
L		٠	`	٠.	

2.	(a)	Prove that $D = \varepsilon_0 E + P$
,	(b)	Derive the boundary conditions for D and H at the
		interface of two dielectrics; hence prove Snell's laws of
		electrostatics.
	(c)	It is found that $E = 60a_x + 20a_y - 30a_z$ mV/m at a
		particular point on the interface between air and
		conducting surface. Find D at that point.
3.	(a)	Write down the generalized forms of Maxwell's equation
		and discuss their physical interpretations.
	(b)	Using Maxwell's equations show that light is a
		electromagnetic wave.
	(c)	Calculate the skin depth δ and the wave velocity at frequency of 1.6 MHz in aluminium for which $\sigma = 38$
	. :	MS/m and $\mu_r = 1$.
4.	(a)	Explain the concept of temporal and spatial coherence
	(b)	What do you mean by stimulated emission? Derive the
	(-,	relation between Einstein's A and B coefficients.
	(c)	Explain the working of a solid state laser.
5.	(a)	What is the difference between polarised and unpolarise
		light?
	(b)	A glass plate is used as a polariser. Find the angle of
		polarisation and the angle of refraction. Given μ for glas
,	ماده ا	= 1.54. 221201 \ 2
	ode	221201 2

		. N-wiona
	(c)	Two Nicol prisms are crossed to each other. Now one
•		of them is rotated through 60°. What percentage of
		incident polarised light will pass through the system?
		Explain your answer. 4
	(d)	Explain the principle of birefringence. Explain how
		birefringence can be used to calculate the stress in a
		material. 5
6.	(a)	What do you mean by UV catastrophe? Show that
	•	Planck's law merges with the Rayleigh Jeans at low
		frequencies. 4
	(b)	Derive the wavelength shift for a photon in a Compton
٠.		scattering process. 5
	(c)	Determine the size of hydrogen atom using uncertainty
		principle. Give that potential energy $V = \frac{-e^2}{4\pi\epsilon_0 a}$ where
	,	a is the distance of the electron from the nucleus. 5
7.	(a)	Set up the Schrodinger's equation for a particle trapped
		in a box. Solve the equations and normalize the wave
		function. Discuss the physical interpretation of the
		obtained energy eigenvalues. 10
	(b)	A particle limited to the x-axis has the wavefuntion
	· ·	$\psi = ax$ between $x = 0$ and $x = 1$; $\psi = 0$ elsewhere.
		Find the probability that the particle can be found between
Co	de · ˈ	221201 3 P.T.O.
CO	ue .	# ·······

	x = 0.45 and $x = 0.55$. Also find the expectation value	lue
	(x) of the particle's position.	4
8. (a	a) Write down the postulates of special theory of relativ	ity.
		2
(t	b) What do you mean by time dilation and leng	gth
	contraction?	3
(c	c) A spacecraft is moving relative to earth. An observer	on
	the earth finds that, between 1 PM and 2 PM accord	ing
	to her clock, 3601 s elapse on the spacecraft's clo	ck.
	What is the spacecraft's speed relative to earth?	4
(d) A stationary body explodes into two fragments each	of
1	mass 1.0 kg that move apart at speeds of 06 c relat	ive
	to the original body. Find the mass of the original bo	dy.
	Explain the interpretation of your answer.	5
. W	rite short notes on:	
(a)	Tops down and bottoms-up technique	4
(b)	Quantum confinement in semiconducting nanostructu	res
•		5
(c)	Applications of nanotechnology in the field of medic	ine
	and therapy	<u></u>

	•	
ode :	221201 4	