Code: 100811

2)

B.Tech 8th Semester Exam., 2022

(New Course)

INTRODUCTION TO COMMUNICATION SYSTEMS

Full Marks: 70 Time: 3 hours

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following $2 \times 7 = 14$ (any seven):
 - A binary PCM system with 256 (a) quantizing levels has a sampling frequency of 7 kHz. The bit rate of the system is
 - (i) 56 Kbps
 - (ii) 96 Kbps
 - (iii) 112 Kbps
 - (iv) 168 Kbps

- (b) For an 8-bit binary PCM, if the sampling frequency is 8000 samples per second, the bit rate of the PCM signal is
 - (i) 256 Kbps
 - (ii) 128 Kbps
 - (iii) 64 Kbps
 - (iv) 32 Kbps
- Consider a signal

$$x(t) = 3 + 5\cos^2(4500 \pi t)$$

intervals of T seconds. The maximum value of T for which x(t) may be recovered from the sampled version without any distortion, is equal to

- (i) 0.111 ms
- (ii) 0.222 ms
- (iii) 0.333 ms
- (iv) 0.444 ms
- (d) A signaling system in which each letter of the alphabet is represented by a different symbol is not used because
 - (i) it would be too difficult for an operator to memorize
 - (ii) it is redundant
 - (iii) noise would introduce too many errors
 - (iv) too many pulses per letter are required

- (e) Indicate the false statement.
 In order to combat noise
 - (i) the channel bandwidth may be increased
 - (ii) redundancy may be used
 - (iii) the transmitted power may be increased
 - (iv) the signaling rate may be reduced
- (f) Pulse-width modulation system is used for telegraphy
 - (i) by differentiating pulse-position modulation
 - (ii) with a monostable
 - (iii) by integrating the signal
 - (iv) with a free-running multivibrator
- (g) Which is the greatest disadvantage of PCM?
 - (i) Highly prone to noise
 - (ii) Cannot travel long distances
 - (iii) Its inability to handle analog signal
 - (iv) Large bandwidth is required for it

- (h) In digital communication system, in order to increase noise immunity, it is necessary to increase
 - (i) signal power
 - (ii) signal amplitude
 - (iii) signal frequency
 - (iv) signal magnitude
- (i) Quantization is _____ process(es).
 - (i) non-linear
 - (ii) reversible
 - (iii) non-linear and reversible
 - (iv) None of the above
- (j) A PAM signal can be detected using
 - (i) low-pass filter
 - (ii) high-pass filter
 - (iii) band-pass filter
 - (iv) all-pass filter

2. (a) The low-pass signal x(t) with a bandwidth of W is sampled with a sampling interval of T_s , and the signal

$$X_{p}(t) = \sum_{n=-\infty}^{\infty} x(nTs) p(t - nTs)$$

is reconstructed from the samples, where p(t) is an arbitrary-shaped pulse (not necessarily time limited to the interval $[0, T_s]$).

- (i) Find the Fourier transform of $X_p(t)$.
- (ii) Find the conditions for perfect reconstruction of x(t) from $X_{p}(t)$.
- (iii) Determine the required reconstruction filter.
- (b) Determine the tap weight coefficients of a three-tap zero forcing equalizer if the ISI spans three symbols and is characterised by the values x(0) = 1, x(-1) = 0·3, and x(1) = 0·2. Also determine the residual ISI at the output of the equalizer for the optimum tap coefficients.
- 3. (a) A signal m(t) of bandwidth B=4 kHz is transmitted using a binary companded PCM with $\mu=100$. Compare the case of L=64 with the case of L=256 from the point view of transmission bandwidth and the output SNR.

(b) Draw block diagram and explain the difference between delta modulation and adaptive delta modulation with example.

7

4. (a) A source emits three equiprobable messages m_1 , m_2 and m_3 encoded by signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ respectively, where

$$s_1(t) = 20\sqrt{2}\sin\frac{2\pi}{T_M}t$$

$$s_2(t) = 10\sqrt{2}\cos\frac{2\pi}{T_M}t$$

$$s_3(t) = -10\sqrt{2}\cos\frac{2\pi}{T_M}t$$

and $T_M = \frac{1}{20}$. Each of these signal durations is $0 \le t \le T_M$ and is zero outside this interval. The signals are transmitted over AWGN channels.

- (i) Represent the signal in a signal space.
- (ii) Determine the decision region.
- (iii) Obtain an equivalent minimum energy signal set.
- (b) Explain Gram-Schmidt orthogonalization process with example.

(Turn Over)

7

7

7

(Continued)

7

7

- 5. (a) Explain ASK, PSK and FSK. With the help of signal space diagram, explain which one is the best among these three. Also, write its probability of error equation.
 - (b) In a binary data transmission using duobinary pulses, sample values of the received pulses were read as follows:

12000-200-20200-20220-2

- (i) Explain if there is any error in detection.
- (ii) Can you guess the correct transmitted digit sequence?
- 6. (a) Given the data stream 1110010100, sketch the transmitted sequence of pulses for each of the following line codes:
 - (i) Unipolar non-return-to-zero
 - (ii) Polar non-return-to-zero
 - (iii) Unipolar return-to-zero
 - (iv) Bipolar return-to-zero
 - (v) Manchester code
 - (b) Consider a test signal m(t) defined by a hyperbolic tangent function :

 $m(t) = A \tanh(\beta t),$

where A and β are constants. Determine the minimum step size Δ for delta modulation of this signal, which is required to avoid slope overload. 7. (a) Design a DSB-SC modulator to generate a modulated signal k $m(t)\cos \omega_c t$, where m(t) is a signal band-limited to B Hz. Figure shows DSB-SC modulator available in the lab. The carrier generator available generate not $\cos \omega_c t$ but $\cos^3 \omega_c t$. Explain whether you would be able to generate the desired signal using only these available equipments. You are free to select any kind of filter:

- (i) Find the type of filter required to get DSB-SC signal $k m(t) \cos \omega_c t$.
- (ii) Determine the signal spectra at points b and c in figure mentioned above and mention the frequency band occupied by these spectra.
- (iii) Would this scheme work if the carrier generator output were $\cos^2 \omega_c t$? Explain.
- (iv) Would this scheme work if the carrier generator output were $\cos^n \omega_c t$? For any integer $n \ge 2$.
- (b) Discuss the generations of PPM, PAM and PWM in detail with applications.

(Turn Over)

7

7

7

7

7

- 8. (a) What is equalizer? Enlist the type of equalizer and describe the working of eye diagram.
 - (b) A low-pass filter transfer function $H(\omega)$ is given by

$$H(\omega) = \begin{cases} (1 + K \cos T\omega)e^{-j\omega t_d}, & |\omega| \le B \\ 0, & \text{otherwise} \end{cases}$$

A pulse g(t) band limited to B Hz is applied at the input of this filter. Find the output y(t). If the width of the input g(t) pulse is δ , find the width of the pulse received at output.

- 9. (a) State and prove sampling theorem. What is the criterion to remove aliasing effect?
 - (b) Given that the bit sequence given below is to be transmitted:

Bit sequence: 10110010

Draw the resulting waveform, if the sequence is transmitted using—

- (i) unipolar RZ;
- (ii) polar RZ;
- (iii) AMI;
- (iv) split face Manchester;
- (v) M-ary where m = 4 (polar quaternary).

* * *

Code: 100811

7