Code: 303202

{2}

BCA 2nd Semester Exam., 2016

MATHEMATICS

Time: 3 hours Full Marks: 60

Instructions:

- (i) All questions carry equal marks.
- (ii) There are **SEVEN** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question Nos. 1 and 2 are compulsory.
- 1. Choose the correct answer (any six):
 - (a) If the function $f(x) = x \sin x$ satisfies

$$f''(x) + f(x) + t\cos x = 0$$

then the value of t is

- (i) 1
- (ii) 2
- (iii) -2
- (iv) None of the above

- (b) A non-zero polynomial f(x) of degree 3 has roots at x = 1, x = 2 and x = 3. Which of the following is true?
 - (i) f(0) f(4) < 0
 - (ii) f(0) f(4) > 0
 - (iii) f(0) + f(4) > 0
 - (iv) f(0) + f(4) < 0
 - (c) The real root of the equation $\cos x 3x + 1 = 0$ correct up to 4 decimal places by the method of iteration is
 - (i) 0.8071
 - (ii) 0-6071
 - (iii) 0.7071
 - fiv) 0.9071
 - (d) The process of estimating the value of dependent variable at an intermediate value is called
 - (i) interpolation
 - (iii) extrapolation
 - (iii) estimation
 - (iv) dependency
 - (e) Simpson's $\frac{1}{3}$ rd rule is obtained by taking n = --- in the general quadrature formula.
 - (i) 1

(ii) 2

(iii) 3

(iv) 4

- (f) Gauss-Jacobi method is a/an ____ method.
 - (i) non-iteration
 - (ii) iteration
 - (iii) algebraic
 - (iv) None of the above
- (g) Convergence in the Gauss-Seidel method is ____ as fast as Gauss-Jacobi method.
 - (i) thrice
 - (ii) same
 - (iii) twice
 - (iv) None of the above
- (h) Error in Simpson's $\frac{3}{8}$ th rule is ____ compared to Simpson's $\frac{1}{3}$ rd rule.
 - (i) small
 - (ii) negligible
 - (iii) zero
 - (iv) large
- (i) The ____ of a differential equation is the order of the highest derivative appearing in it.
 - (i) value
 - (ii) degree
 - (iii) dimension
 - (iv) order

- (i) Lagrange's polynomial of degree two passes
 - (i) one point
 - (ii) two points
 - (iii) three points
 - (iv) infinite points
- 2. Answer any three of the following:
 - (a) Explain with examples exact and approximate numbers.
 - (b) Describe the method of false position.
 - (c) If the matrix A is such that

$$A = \begin{pmatrix} 2 \\ -4 \\ 7 \end{pmatrix} (1 9 5)$$

then find det(A).

- (d) Find x_3 for $f(x) = 0.75x^3 2x^2 2x + 4$ using Newton-Raphson method. Assume that $x_0 = 2$.
- (e) In the LU decomposition of the matrix

$$\begin{pmatrix} 2 & 2 \\ 4 & 9 \end{pmatrix}$$

if the diagonal elements of U are both 1, then find the lower diagonal entry l_{22} of L.

3/ The velocity V km/min of a motorbike that starts from rest is given below.

		_						1,		
t	2	4	6	8	10	12	14	16	ìs.	20
V	10								_	
	10	10	25	29	32	20	11	5	2	0

Find the approximate distance covered 20 minutes using Simpson's $\frac{1}{3}$ rd rule.

Describe Lagrange's interpolation formula. Consider the following x_i 's:

į	0	1	2	
X,	1	3	-2	

Find $L_0(x)$, $L_1(x)$ and $L_2(x)$.

5. f(x) is known and its values are given below. Here $f(x) = x^3 + 2x^2 + 3x + 1$:

X _i	0	1	2	3	4
f_{i}	1	7	23	55	109

Find f(0.5) and f(1.5) using Newton's forward difference formula.

6. Use Jacobi method to find the solution of the following set of linear equations:

$$5x_1 - 2x_2 + 3x_3 = -1$$

$$-3x_1 + 9x_2 + x_3 = 2$$

$$2x_1 - x_2 - 7x_3 = 3$$

7. Solve by Runge-Kutta method for the DE

$$\frac{du}{dx} = -2u + x + 4, \ u(0) = 1$$

to obtain $u(0\cdot 2)$, using $\Delta x = 0\cdot 2$.

* * *