(2)

Code: 102101

B.Tech 1st Semester Exam., 2018 (New)

PHYSICS

(Electromagnetism)

Time: 3 hours

-Pall Marks : 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer any seven of the following questions:

2×7=14

- (a) Differentiate between conduction and convection current,
- (b) The electric flux density is given as $20/r\hat{a}_r$. Calculate the total charge in the region defined by $0 \le r \le 5$.
- (c) What do you mean by magnetic torque and magnetic dipole moment?
- (d) An infinite sheet in xy-plane extending from -∞ to ∞ in both directions has a uniform charge density of 5 nC/m², Find the electric field at z=10 cm.

- (e) What do you mean by skin effect?
- (f) Differentiate between linear, elliptical and circular polarization.
- (g) With necessary expression, explain standing wave ratio.
- (h) Determine the skin depth of copper at 100 MHz. Assume $\sigma = \frac{58 MS}{m}$ and $\mu = \mu_0 = 4\pi \times 10^{-7}$ H/m.
- (i) Explain the terms 'motional e.m.f.' and 'transformer e.m.f.'
- (i) What is meant by retarded potential?
- 2. Answer any *two* of the following questions: $7 \times 2 = 14$
 - (a) An EM wave propagating in free space is described by the equation $E = E_0 \cos(\omega t kz)a_x E_0 \sin(\omega t kz)a_y$

Determine (i) polarization of the wave and (ii) magnetic field and the Poynting vector.

(b) Show that Cartesian components of E and H satisfy the three-dimensional wave equation using Maxwell's equations in a dielectric. (c) The magnetic field for an x-polarized plane wave propagating in a dielectric of refractive index 1.5 along the z-direction is given by H = 0.04 sin(10¹⁵ t - kz) A/m. Calculate the values of wavelength, frequency, Poynting vector and also write the expression for electric field.

3. Answer any two of the following questions:

 $7 \times 2 = 14$

- (a) Derive the boundary conditions for electrostatic field intensity and electric flux density at (i) the interface between two dielectrics and (ii) the interface between a perfect conductor and a dielectric.
- (b) A long spherical cloud of radius r has a uniform volume charge distribution of ρ_v . Calculate the potential distribution and the electric field at any point in space using Poisson's and Laplace's equation.
- (c) A coaxial cable has two concentric cylinders of radii a and b (a < b). The space between the two conductors is filled with dielectric of permittivity ϵ for a < r < b. If the inner cylinder is held at potential V_0 with respect to the outer sphere, determine electric field intensity and potential in the two regions.

4. Answer any two of the following questions:

 $7 \times 2 = 14$

- (a) Write an explain Maxwell's equations for a linear, homogeneous medium in terms of E_s and H_s and also write the Maxwell's equation in a source-free region.
- (b) An EM wave in a lossless medium impinges normally on a lossy medium.
 (i) Determine the ratio of transmitted to incident power. (ii) Express the ratio of reflected to incident power.
- (c) In a nonmagnetic medium $E = 4 \sin(2\pi \times 10^7 t 0.8x) a_z$ V/m. Find (i) ε_r and intrinsic impedance, (ii) the time average power carried by the wave and (iii) total power crossing 100 cm^2 of plane 2x + y = 5.
- 5. Answer any two of the following questions: 7×2=14
 - (a) (i) State Ampere's circuit law.
 - (ii) A hollow conducting cylinder has inner radius a and outer radius b and carries current I along the positive z-direction. Find H everywhere.

- (b) A circular loop located on $x^2 + y^2 = 9$, z = 0 carries a direct current of 10 A along a_{ϕ} . Determine H at (0, 0, 4) and (0, 0, -4).
- (c) Determine the gradient and also find the Laplacian of the scalar fields given below:
 - (i) $V = e^{-z} \sin 2x \cos hy$
 - (ii) $U = \rho^2 z \cos 2\phi$
 - (iii) $w = 10 r \sin^2 \theta \cos \phi$
- 6. Answer any two of the following questions:

 http://www.akubihar.com 7×2=14
 - (a) The xy-plane serves as the interface between two different media. Medium 1(Z < 0) is filled with a material whose $\mu_r = 6$ and medium 2(Z > 0) is filled with a material whose $\mu_r = 4$. If the interface carries current $(1/\mu_0)a_y$ mA/m, and $B_2 = 5a_x + 8a_z m$ Wb/m², find H_1 and B_1 .
 - (b) For a linear, isotropic and homogeneous magnetic medium, show that

$$M = \frac{\chi m}{\mu_0 (1 + \chi m)} B$$

(c) Determine the self-inductance of a coaxial cable of inner radius a and outer radius b.

Answer any two of the following questions:

 $7 \times 2 = 14$

- (a) A parallel-plate capacitor with plate area 5 cm² and plate separation of 3 mm has a voltage 50 sin 10³ t volt applied to its plates. Calculate the displacement current assuming ε = 2ε₀.
- (b) In a lossless dielectric for which $\eta = 60\pi$, $\mu_r = 1$ and $H = -0 \cdot 1\cos(\omega t 2\alpha_x + 0 \cdot 5\sin(\omega t 2\alpha_y) A/m$, calculate ϵ_r , ω and ϵ_r .
- (c) A uniform plane wave propagating in a medium has E = 2e^{-cx} sin(10^St βz)a_z.
 V/m. If the medium is characterized by ε₁ = 1, μ_r = 20 and σ = 3 S/m, find α, β and H.
- 8. Answer any two of the following questions: $7 \times 2 = 14$

(a) Determine the polarization of the wave with—

(i)
$$E(z,t) = 4e^{0.25z} \cos(\omega t - 0.8z) a_x$$

 $+3e^{0.25z} \sin(\omega t - 0.8z) a_x V/\varpi;$

- (ii) $H(z) = H_0 e^{-j\beta z} a_x 2H_0 e^{-j\beta z} a_y$.
- (b) A uniform plane EM wave with field varying sinusoidally in medium is incident normally on the surface of medium. Derive the expression for the reflection and refraction coefficients.

AK9/446

- (c) Obtain Poynting theorem for conservation of energy in an EM field and discuss the physical significance of each terms in resulting equation.
- 9. Answer any two of the following questions:

 $7 \times 2 = 14$

- (a) A 10 cm long current element is located at origin in free space carrying a current of 100 mA along x-direction. Find the force on the current filament if a filamentary current of $12a_z$ A is located along x=3 and y=4.
- (b) The electric field intensity in polystyrene (ε_r = 2·55) filling the space between parallel plate capacitors is 10 kV/m. The distance between the plates is 1·5 mm. Calculate (i) the surface charge density on the plates and (ii) the potential difference between the plates.
- (c) Determine whether the following potential equations satisfy Laplace's equation or not:

(i)
$$V = 2x^2 - 4y^2 + z^2$$

(ii)
$$V = r^2 \cos \phi + \theta$$
