(2)

Code: 211304

akubihar.com

B.Tech 3rd Semester Exam., 2017

NUMERICAL METHODS AND COMPUTATIONAL TECHNIQUE

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **MINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct option (any seven) :

 $2 \times 7 = 14$

- (a) Which language is directly understood by the computer without translation program?
 - (i) Machine language
 - (ii) Assembly language
 - (iii) High-level language
 - (iv) None of the above
- (b) In C language, a hexadecimal number is represented by writing
 - (i) x
 - (ii) xo
 - (iii) ox
 - (iv) h

(Turn Over)

- (c) Which of the following languages is not supported by C++?
 - (i) Exception handling
 - (ii) Reflection
 - (iii) Operator overloading
 - (iv) Namespaces
- (d) The Newton-Raphson method fails, when
 - (i) f'(x) is negative
 - (ii) f'(x) is too large
 - (iii) f'(x) is zero
 - (iv) Never fails
- (e) To ensure that the following system of equations

$$2x_1 + 7x_2 - 11x_3 = 6$$
$$x_1 + 2x_2 + x_3 = -5$$
$$7x_1 + 5x_2 + 2x_3 = 17$$

converges using Gauss-Seidel method, one can rewrite the above equations as

(i)
$$\begin{bmatrix} 2 & 7 & -11 \\ 1 & 2 & 1 \\ 7 & 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 7 & 5 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 17 \\ -5 \\ 6 \end{bmatrix}$$

(iii)
$$\begin{bmatrix} 7 & 5 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \end{bmatrix}$$

- (iv) The equations cannot be rewritten in a form to ensure convergence
- (f) If x_n is the *n*th iterate, then the Newton-Raphson formula is

(i)
$$x_n = x_{n-1} + \frac{f(x_n)}{f'(x_n)}$$

(ii)
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

(iii)
$$x_n = x_{n-1} - \frac{f(x_{n+1})}{f'(x_{n+1})}$$

(iv)
$$x_n = x_{n-1} - \frac{f(x_n)}{f'(x_n)}$$

- (g) A unique polynomial of degree _____ passes through n+1 data points.
 - (i) n+1
 - (ii) n+1 or less
 - (iii) n
 - (iv) n or less

(h) Given the two points [a, f(a)], [b, f(b)]. The linear Lagrange's polynomial $f_1(x)$ that passes through these two points is given by

(i)
$$f_1(x) = \frac{x-b}{a-b} f(a) + \frac{x-a}{a-b} f(b)$$

(ii)
$$f_1(x) = \frac{x}{b-a} f(a) + \frac{x}{b-a} f(b)$$

(iii)
$$f_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(b - a)$$

(iv)
$$f_1(x) = \frac{x-b}{a-b} f(a) + \frac{x-a}{b-a} f(b)$$

- (i) The error in the Simpson's one-third rule is of order
 - (i) h
 - (ii) h^2
 - (iii) h^3
 - (iv) h^4
- (j) The error in the Runge-Kutta method is of order
 - (i) h
 - (\ddot{u}) h^2
 - (iii) h^3
 - (iv) h4

 $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$

Find the inverse matrix of the matrix

2. (a) Discuss the parts of an assembly language instruction.

7

7

7

7

7

7

7

(b) Write a flowchart to evaluate the sum of the series $1 + x + x^2 + x^3 + \dots + x^n$.

7

7

7

3. (a) Write a C program to print all the Fibonacci numbers less than 50.

by Gaussian method.

places, of the system

(b) Write a C program to determine the area of a triangle using the formula

83x + 11y - 4z = 957x + 52y + 13z = 104

area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

$$3x + 8y + 29z = 71$$

Find the solution, to three-decimal

where, $s = \frac{a+b+c}{2}$.

by using Jacobi method.

 (a) Write a C++ program to check whether a number is prime or not. 7. (a) A second-degree polynomial passes through the points (0, 1), (1, 3), (2, 7) and (3, 13). Find the polynomial.

(b) Write a C++ program to reverse any number n using recursion.

premium of the policies maturing at different ages. Estimate the premium of policies maturing at age of 63:

Prove that Regula Falsi method has linear rate of convergence.

 Age
 45
 50
 55
 60
 65

 Premium (in 7)
 114.84
 96.16
 83.32
 74.48
 68.48

(b) Find a positive real root of x-cosx=0
 by bisection method, correct up to four decimal places between 0 and 1.

8. (a) Describe the method of least square curve fitting.

8AK/24

(Turn Over)

(b) Evaluate

$$\int_0^1 \frac{1}{1+x} dx$$

by dividing the interval of integration into 8 equal parts. Hence find $\log_e 2$ approximately.

9. (a) Find the value of y(1·1) using Runge-Kutta method of fourth order,

$$\frac{dy}{dx} = y^2 + xy, \ y(1) = 1.0$$

(Take, h = 0.05)

given that

(b) A boundary value problem is defined by

$$\frac{d^2y}{dx^2} - y = 0$$

where y(0) = 0 and y(2) = 3.62686. Find the value of y(1) by using finite difference method. (Take, h = 0.5)

* * *

Code: 211304

7

7